I’ve had the stave this bow came from hanging in the rafters for at least three years and to be honest, I can’t for the life of me remember where it came from. Every time I moved it out the way to get to a different stave it would catch my attention. I love making bows from holly as it is excellent bow wood (if you can find a clean straight bit that is!) But every time I inspected this particular stave I’d be reminded of the bloody great chainsaw cut which was three parts of the way through the belly of what would end up being one of the limbs outer 1/3 sections. (Bloody tree surgeons!) And that is why this particular stave kept getting put back in the rafters!
There was little intact belly wood remaining usable at this cut point, which led me to believe that the likelihood of this stave making a bow over 20lbs was low. So with those thoughts in my head I decided to quickly chop down to the bottom of the saw cut to see exactly how much wood remained intact. If there wasn’t enough I’d just scrap the stave and make space in the rafters.
But after 10 mins with the axe I was able to see that there was actually a little bit more wood left behind than I first thought, although definitely not enough to make a hunting weight bow. Enthused by this discovery I roughed out a basic profile and limb thickness to see exactly what I was able to play with. About 8mm of wood was all of what remained just outside of where the static tip fade would end and the working part of the outer limb would start. Not Ideal!
After completing the roughing out of both limbs, I set to tillering the stave to brace height. At this point I could see that some fairly minor propeller twist and string alignment issues would need resolving before taking the tiller much further. At this point it was already apparent that the weight was going to end up pretty low so I thought I’d have a go at fixing all the bending and twisting issues whilst at the same time adding a few more pounds of draw weight through heat treating the belly of the stave. The heat treatment took place whilst the stave was clamped strategically into an optimal position on a form with a touch of reflex. And it worked out pretty well! After taking a blow torch to the entire belly for half an hour, nearly all of the propeller twist came out, and the string alignment was resolved to. And all whilst adding a good 5 or 6lbs of well received draw weight too! Bonus!!
After tillering down to 26” on the tree I was now getting about 40lbs ish on the scale. So with a slightly whippy positive tiller I decided to shoot in the last couple of inches rather than pulling her down to 28” on the tillering tree. I often find that I’m best doing this towards the end of the tillering process as lets face it, the way we pull on a bow when actually shooting it is really quite different to how the bow is stressed on a tillering tree.
After a couple of hundred arrows I checked the tiller and all looked good so I finished sanding her down which knocked a pound or so off and left her pulling 40lbs at 28”. The positive tiller held good and I was pleased to have managed to pull off a sweet shooting light weight selfy, which actually looks quite good. I really like the contrast between the light and dark of the back and belly. Buffalow horn tip overlays also contrast sharply with the light wood of the back.
I finished the handle with some really nice thick wild red deer rawhide which I processed myself from a neck cape which came from a stag I shot back in the autumn. After re-wetting the rawhide and forming it around the contoured grip I let it dry for a couple of days. Once dry it got trimmed, punched, stained and glued/sewn back on. I dyed the rawhide dark tan with an impressive product which is new to me, Leather Dye WB – Furniture Clinic. I’ll certainly be using this product again as it works extremely well on rawhide. It’s a water based leather stain and soaks into both dry and wet rawhide amazingly. It penetrates really deep and dries quickly too and once dry it doesn’t rub off either unlike many other leather stains I’ve used before. And as it is a water based stain, you can oil over the stain to leave the whole thing totally water proof and looking like traditionally tanned leather. After a single coating of the leather stain I gave this particular handle covering along with the rest of the bow 6 coats of tung oil. Each coat being left a couple of days between coats to soak right in. I love the satin finish tung oil gives and I think that it sometimes suits certain bows better than the usual glossy Truoil type finishes. The handle covering is glued in situ with Titebond III.
The string is 12 strands of B55 and the silencers are Wild Beaver fur.
After a break spanning a few years, I’ve been experimenting with snake skins again recently. I love snake skins as a backing material as, in my opinion, they look amazing and are fairly simple to apply if you know what you’re doing. Admittedly my first couple of attempts to apply snake skins to a bow where less than perfect. But I’ve got a system in place now which is simple and effective and seems to work very well for me. At some point in the future I’ll do an article on my own quick and simple way of applying snakes skins.
The only trouble I find with snake skins is trying to source them here in the UK. I once paid an absolute arm and a leg to import a pair of Western Diamondback skins from the USA. As beautiful as those skins were, I simply can’t justify the cost of getting skins from traditional species of North American snakes into the UK these days. So I’ve started to use skins from Asiatic snake species instead.
The skins shown in the pics below are imported from Asia and are from a very common species of snake loosely referred to as the Asian King Ratsnake – Elaphe carinata. In terms of their conservation status these snakes are currently ranked (LC-least Concern) by the IUCN- See here: Elaphe carinata – Wikipedia. Whilst there is no doubt that these skins are not as pretty as skins from something like a North American rattle snake or even a Boa, I still think they look pretty amazing! And these Asian skins cost a mere fraction of the price of a pair of rattler or Boa skins!!
The bow featured in this post is one of my older sinew backed Yew recurves. A friend of mine asked me a while back if I had a hunting weight primitive bow which a mate of his could buy from me to hunt deer with. (Not here I hasten to add!!) This particular bow was one of my favourite stumping bows. It’s compact enough to be woven through the scrub and it certainly packs plenty enough punch to deliver appropriately weighted arrows for a lethal shot on a deer sized target.
Since this particular bow has seen many hundreds, if not thousands of arrows through it I can reliably say with certainty that this bow will withstand a lot of use and abuse, so I offered this bow to the avid hunter after re finishing it for the guy with the addition of a snake skin backing to provide an aesthetic upgrade, as well as a modest camo effect.
I also replaced the fairly battered old leather handle with my new favourite cover material – home processed and prepared deer rawhide. What an amazing handle cover material deer rawhide is! Not only does it look great after staining (note the marbled like effect from using a dark leather stain wiped off with pure isopropyl alcohol), but it’s also an incredibly hard wearing material. Deer rawhide must be sealed though else it will absorb water, but that’s no problem as raw hide will also take an oil finish like Truoil or Tung oil really well so you can oil finish/waterproof the handle at the same time as you oil finish/waterproof the bow wood.
Here are a few photos of the re-finished bow. Hope you like!:
I was given a 3” elm pole by a mate of mine who coppiced a butch of the stuff in one of his hedgerows last year. Many of the poles/logs were around the 3-5” mark so I asked him to save the better stems in his barn so I could pick through them at some point. Many of the stems had been attacked by the beetle and were unusable, which was a real shame because some of the stems would have been perfectly good bow staves had it not been for all the damage below the bark.
In this part of the world we are cursed with Dutch elm disease. It really is quite rare to find an elm stave which doesn’t have any damage at all. I have tried making character elm bows out of badly beetle damaged elm before, but have concluded that the weakness induced by the fungal pathogen will invariably lead to a broken bow at some point in the future.
One or two small spots of black rot tends to be ok though, so the stave which made this bow was given a chance to prove itself, as I really liked the slight wiggle and snake this stave reflected after roughing out. In addition to the tiny bit of beetle damage, I had to negotiate a few other features too, such as knots, drying checks and some propeller twist which came out pretty easily witha little dry heat.
Given the undulating back of this stave I decided to try and mimic the topography of the back on the belly, but in reverse of corse. This created a slightly hollow and varied contour to the bulk of the bows belly. I also opted for a slightly hollow belly in order to maximise the potential for removing some of the beetle damage which was apparent on the belly of the bottom limb.
In order to get the worst of the beetle damage out of the stave I ended up with quite thin limbs, both in terms of width and thickness. As a consequence I ended up with a bow which is a bit on the light side, finishing out at about 42lbs after the initial shooting in phase. Since sanding and finishing the bow, plus a lot more shooting in, she has now settled into about 40# @ 28”. Not too bad for a pretty gnarly elm stick!
I know a lot of trad archery folk hate arrow shelves but I’m not one of them. I like an arrow shelf simple because I can shoot arrows with feathers without having to wrap the fronts of the fletching in order to prevent a quill winding up embedded in my hand.
As much as I like shooting my own primitive arrows with feather fletchings wrapped with sinew, I do find that the raised sinew wrapping can sometimes cause a bit of deflection when it makes contact with the arrow pass or arrow shelf. I often see this deflexion manifest as a false nock left. Or if shooting of a shelf, a false nock high and left.
In addition to an arrow shelf I went to the effort of putting tip overlays on her. If you read my previous post you will have seen that I have recently come across a really nice and very old yew log which has been exposed to the elements in a dead state whilst still being attached to a huge and very old yew tree.
This exposure to the elements has resulted in the sap wood completely rotting off the log leaving pure yew heartwood behind. On closer inspection this heartwood was encapsulated in a 1/8th inch thick layer of dark, hard and perfectly preserved resin saturated timber. This resinous outer coating is hard like oak. It is impossible to mark it with a finger nail (unlike normal yew heart wood) so I decided to try making tip overlays with it, with a view to making sure that the overlay was situated so that this really hard and wear resistance outer layer would be the surface which the bow string would contact with. My idea worked very well and the overlays look lovely contrasting sharply against the light coloured elm sapwood. I’ll certainly use this petrified yew log to produce other overlays in the future.
The handle wound up being a deeply contoured grip style which would have made it quite difficult to wrap a piece of tanned leather around so I opted for a piece of roe deer raw hide which I made myself recently. (Article to come shortly.) I stained it with some leather stain since it was quite bland looking. It looks all right and almost kinda marbled. And despite it being paper thin, it feels really nice and durable. I expect it will outlive the bow by a mile!
This bow was finished with 8 coats of truoil and has stood up well to a fair bit of shooting. I’ve matched it up to a set of handmade 35# 400 grain bamboo arrows, fletched with turkey wing feathers and tipped with modified empty bullet cases for stump heads. These arrows shoot very well and over the chrono I got an average speed of 142ft/sec.
It never ceases to amaze me how tough bamboo arrows are. Despite being shot dozens of times at all sorts of stuff all three arrows are still going strong!! I intend to do a detailed arrow build at some point so keep an eye out for that article coming at some point this year. I’m also working on a pile of new bows which I hope to show off soon.
I’ve often thought about using yew as a material for tip overlays. As attractive as the idea is though, I’ve always been conscious of the idea that yew heartwood is a little bit on the soft side to prevent string wear over time. Well at least on a heavy bow. I’m not convinced that a 50lb bow would suffer from too much trouble in this regard, and expect that the old adage that yew self nocks will cut through is only really applicable to bows with a war bow like weight.
With all that said, up until now I’ve avoided using yew heartwood as tip overlays, just in case they do fail. And also because I’ve never been short of alternative overlay materials such as buffalo horn, bone, antler, bog oak etc. And since these other materials look amazing on just about any bow, I’ve never really had the need to explore using yew. Well up until now that is!
The other day I chanced across the large mature yew pictured bellow. After admiring the size and beauty of this magnificent tree I couldn’t help but notice that it had a short section of very dead and blackened limb protruding from near the base of the tree.
In this photo the dark dead limb can be seen right in the middle of the base of the tree. To give you some scale its about 1 metres long.
This dead branch was so blackened on the outside that it drew me in for further investigation. Upon closer inspection this dead limb had clearly died off many years ago and had seen all of its white wood rot away leaving behind nothing but pure heartwood. I was curious to discover to what extent this black outer coating penetrated down into the underlying heartwood, so I sliced away at a small section with my pocket knife to expose the underlying material.
In the pictures above you can see where I sliced into the branch. The blackening was only surface level but directly below this blackened surface was a really nice, dark layer of heartwood. The first thing I noticed about this underlying dark layer of heart wood was how very hard it was. My pocket knife is pretty sharp but was struggling to make headway as I tried to dig down through this layer.
At this point my interest in this dead branch peaked. Unlike normal soft yew heart wood, this outer layer of rock hard yew heartwood would surely make for a very functional, not to mention beautiful, tip overlay material.
After further investigation of this exposed layer I could see that the reason for this hardening was a common process which many conifers perform when parts of their structure die off. In order to protect its self from pathogen ingress, conifers seal off dead parts by pumping sap bourn resins into the areas which form boundaries between dead and living parts. These resins fill the cells of the trees dying tissues and they eventually set hard like a super glue does once soaked into the pores of wood. The protective outer layer that this process provides protects the living parts of the tree from being colonised by pathogens which might otherwise colonise dead and dying part of the tree in close proximity to living parts.
All the bush crafters out there will have seen this process manifest as the “fatwood” phenomena which leads to the production of resin saturated dead branches on many species of conifer. Bush crafters will remove these “fatwood” branches from dead pine, spruce and fir trees to facilitate fire lighting, as these dead resin saturated branches are highly flammable and aid significantly in fire lighting processes.
I’ve never witnessed resin deposits in yew before however, so this was a learning opportunity for me. The resin deposit I was seeing here in this dead yew limb was nowhere near as extensive as occurs in many other conifer species but was clearly sufficient enough to have created a 3-4mm thick layer of very hard wood. This would be more than enough material to position against the back of a bows limb tip preventing the likelihood of a string cutting through a string grove cut across an overlay made from this particular yew heartwood.
Given that this limb was not affording this magnificent tree any benefit, I decided to “borrow” it for some experimentation. So making sure to leave several inches of dead resin filled wood at the base of the branch to offer protection to the living tree, I cut the dead limb off.
Initially I was a bit concerned with all the splitting which can clearly be seen in the photo above. But after closer inspection I could easily envisage finding plenty of spaces in between the myriad cracks to wrestle out plenty of overlays.
A spiders web of cracks!
First split exposes some lovely looking wood.
I followed the existing cracks to split out wedges to be worked down further. No difficulty splitting these rounds, especially as they were still quite wet at this point.
Here you can really see the colour difference between the harder, darker, resin saturated portion as it contrasts against the lighter softer parts.
Two rounds split down into workable sized pieces. Enough to last me quite a while!
The wood was initially quite wet so after cleaving the rounds down into more manageable sizes I brought them indoors and sat them on top of the fireplace to dry out thoroughly. Splitting was minimal and they were a joy to work down to a suitable profile.
Below are a couple of photos of my first attempt at making overlays from this log. I think they look pretty cool. The string groves are cut right down through the lighter, softer heartwood up to the darker, harder resin impregnated section. This arrangement means that the colour contract between a white wood bow and the yew overlay is maximised, whilst also ensuring that the string only makes full contact with the hardest part of the overlay.
This top limb overlay was deliberately skewed to follow the contour of the limb tip.
A slightly lighter piece but with more pronounced grain. The bow is Elm.
I’m currently toying with the idea of trying holy as an overlay material since it is pretty hard and a beautiful bright white. I imagine it would contrast sharply against something like a dark stained white wood. (Watch this space!)
If you found this article interesting then keep an eye out in your own local area for some resinous yew so you can give yew heartwood overlays a go. I think there is now a place for yew in my selection of tip overlay materials. What do you think? Please let me know in the comment section below!
Ash is a timber which is super common in my part of the world. As a firewood, Ash is a favourite of mine. As a bow wood though, it is never my first choice. Nor is it my second choice come to think of it!
Ash staves always seem to find their way into my stave collection though. Not surprising really given the abundance of clean and relatively straight logs which abound within my local landscape.
The stave which this bow came from was cut out of a hedgerow by one of my neighbours who was in the process of laying an old derelict hedgerow. The hedgerow in question was full of nice straight and clean 4-6” diameter Ash stems which had coppiced up from the remnants of the parent trees which were laid decades earlier.
I dread to think how many bows I’ve made from Ash. Back in my late teens I would try and make English style D shaped longbows from Ash only to be bitterly disappointed when the bellies chrysaled and the set was measurable in feet not inches! (Joking of course).
So when I pulled this stave out of the rack a few months ago I knew that, without optimising the bow design, a bow made from this stave would only make a “reasonable” bow at best, no matter how clean and straight it was.
So I decided to make yet another Ash bow, but one which would incorporate design features which would enhance efficient and durability whilst also making it a pleasure to shoot. But without any frills! This was going to be a quick and simple primitive bow with only one none essential addition – An arrow rest. Just because I fancied one!
As is the norm around here, this typical Devonian Ash stave showed thin rings and way more early wood than I like to see. But this is just the way most of the Ash in this part of the world grows. Here in the South West, our mild and wet 10 month growing season produces timber which is fast growing through the spring months. This long growing season leads to many of our native hardwood species laying down a considerable proportion of its total seasonal growth ring to early wood.
Ash in general is weak in compression. Our local Ash is even weaker in compression than normal, so if this stave was going to make a bow which would perform and last, then I would have to pull out all the stops to prevent any delaminating in the fades and/or the belly getting crushed. Both of these faults are common place with our local Ash unless extra care is taken.
This bow came from a stave which was 76” long. I cut it down to 68” to ensure that the length was adequate enough to mitigate for the weaker than average compression strength I’d envisaged this stave suffering from. The plan was to end up with a bow measuring 66” nock to nock with limbs 2” wide for the inner thirds tapering down to 3/4″ wide self nocks
In terms of basic appearance I was going for the typical flatbow face profile with limbs lenticular in shape. The cambium had been left on this stave so I worked a camo effect pattern into it. The handle would be deep and contoured simply because I can knock my favourite shape out so quick and easy these days that it takes me no time but adds tremendous comfort to the grip.
Tiller would be circular and the limb tips would be made to do as much work as the rest of the limb in order to maximise the distribution of compression over the greatest possible surface area. Fades would be 3” max in order to get as much limb bending as I could without sacrificing a rigid handle.
The limbs would be slightly hollowed out so as to almost mimic the crown on the back in order to increase the surface area of the belly. Thickness across the width of the limb would increase slightly towards the centre line and thin towards the edges. And the corners on the back would be slightly rounded in order to take some of the tension strong back wood out of commission. This would achieve a better balance between the overpowering tension strength and the compression weak belly wood which this particular Ash stave presented me with.
After basic roughing out, the stave was pretty straight and with a moister content probably around 12%. I wanted some overall reflex in the bow before starting the tillering process so I clamped the stave to a reflex form with about 2” of induced reflex. Clamped in reflex, I then force dried the roughed out stave over my wood burner until the weight would not reduce any further.
After some time to recover ambient moisture levels (6-8%) I tillered the bow to brace height. Most of the force drying reflex had fallen out so before commencing with full tillering, I decided to put the bow back on the same reflex form and thoroughly heat treat it over my wood burner stove top.
My stove was running scolding hot thanks to some lovely dry beech logs. Each limb got about an hour and a half sat over the stove top in order to cook both limb bellies right through to the centre of the limb. The bow’s mass was reduced significantly and given the depth of the cook, there was no way this bow was going to take in much ambient moisture again.
One of the benefits of heavily heat treating white woods is that the cooking process makes the belly side of the bow somewhat hydrophobic. This reduces the woods ability to suck ambient moisture back in. Raw untreated/unsealed Ash loves to suck in atmospheric moisture, which is why it can become a noodle very quickly in damp condition without very good sealing.
After heat treating, I gave the bow a couple of days to rehydrate back to something more like 6-8% moisture content. An untreated, unsealed ash bow will soon suck in enough ambient moister to raise its moister content back up to around 10%. that would be a recipe for set. However a heavily heat treated bow will not slip back to that kind of moisture content without actually wetting it.
After a couple of days to reacclimatise, I then carried on with tillering the bow back to brace again. The cooking of the belly had moved the tiller slightly and added several pounds in draw weight. This is usually what happens so should be expected. In fairly short time she was finished on the tiller tree and looked and felt about 1/8th positive at 53lb at 27”.
I find that heavily heat treated bows will produce the same arrow speeds as untreated bows of significantly higher draw weights and this bow proved that theory once again. The chronograph demonstrated average arrow speeds of 168fps with a 450 grain arrow. That’s not bad for a simple Ash self bow which was only drawn to 27”!
For a finish I just used a clear polyurethane which I had kicking about. The colour which you can see in the remnants of the cambium are as a result of a couple of days sat in the ammonia fuming pipe before roughing out and force drying began. The tannins in the bark went a nice dark green/brown. The cammo effect looks great.
I didn’t bother with a handle covering on this one. It feels very comfortable even without a covering. For the arrow rest I just used some leather scraps. Nocks were a rendition of the classic Sudbury bow design as depicted in the fantastic book: Encyclopedia of Native American Bows, Arrows & Quivers Volume 1 page 32. My nocks were filed in at 45 degrees though, as opposed to the original 90 degrees as illustrated in the previously mentioned book.
The mass was reduced tremendously by the heat treating process and this bow feels nice and light and manoeuvrable in the hand. After shooting her in, the reflex had dropped a bit. Immediately after unstringing there is about 1” of reflex which settles back to about 1 ½” after resting.
This ended up being a super snappy lightweight bow settling in after 2 weeks of shooting at 51lb at 27”. She is certainly plain and simple but has all the power and functionality that you would want in a primitive hunting bow.
She balances well in the hand whilst being carried and feels well balanced through the draw cycle. She doesn’t stack and is lovely and comfortable to hold back at full draw. The release is nice and quiet without any hand shock due to the low limb mass and comfortable grip. The bow string is the one I made for the previous blog post article I did a few weeks ago discussing using a squirrel tail to make string silencers. You can read that post here: https://southmoorbows.com/squirrel-tail-bow-string-silencers-quick-and-easy-way/
So here she is, hope she inspires you to have a go at heat treating an otherwise simple white wood flatty. Enjoy!
This bow started out life as a 2-3” branch which I harvested a couple of years ago. Given all the knots, kinks and wiggles, I knew it was going to be a challenge to turn this ugly little stick into a bow. Yew is one of those few bow woods which can be incredibly forgiving however, so I decided to give it a go!
The main challenge with this branch was going to be placing a bow back somewhere on it, and in a way which would keep the back from including any of the larger more fragile knots. One particular face was cleaner than the rest, but by choosing to use this face as the bows back, I would have to deal with a significantly deflexed 8” section which would have to fall somewhere between one of the limbs fades and the middle of that limb.
The branch measured only 68” long so I would have little opportunity to manipulate the handle location anywhere other than in the approximate centre. Given all the potential weak points on this branch, I did not dare to aim for a bow any shorter than 66” nock to nock.
I knew that I’d be able to steam out some of the unsightly deflex in what ended up being the top limb, but given all the knotty material in this deflexed section, I dared not try to straighten it out completely as the likely hood of one on the knots popping was very high.
After roughing out the basic limb thickness and face profile, I set about reducing the deflexed section with steam. After that was taken care of the small amount of string misalignment plus a little twist was corrected with some dry heat. At this point I also steamed in the gentle recurves. Now I had a more workable and predictable shape, I could then start to think about the final limb width and general profile/cross section.
The heartwood content of this bow was not great and the sapwood was about 8-10mm thick. The back was covered in small raised pins so chasing a ring was totally out of the question. And since the likely-hood of this branch ending up as firewood was high, there was no way I would consider investing time and effort to sinew back a risky bow like this, just to get away with violating the back in order to improve the ratio of sapwood to heart wood.
As with all branches, the pithy centre was biased towards the side which had the tighter growth rings (1-2mm) which happened to be on the same side of the branch which I’d chosen as the back. This meant that the pith was currently contained within both limbs and ran right through the handle.
Whilst I have no problem with the pith running through the handle section or even the thicker parts of the fades, I do not like leaving the pith in the working parts of the limbs. Experience has taught me to expect cracking, splitting and even fretting to occur when the pith runs close to the surface of the belly material.
Given that the crown on this branch was significant and the pith was currently buried inside the roughed out limbs I opted to hollow out both limbs to match the crown, whilst hopefully getting deep enough to remove the pith at the same time.
This worked fine but left me with very little heart wood. In fact the sapwood to heartwood ration was around 70/30%. Not ideal so I decided to take the sides in as the sides were entirely sapwood. This reduced the limb width down from about 1” 7/8ths to around 1” 5/8ths.
Now that the pith was out of the limbs and the heartwood sapwood ration had been improved, I didn’t have a great deal of bow left to play with, so I had to be realistic with the outlook. I guessed she would probably make for a finished bow around 35 40lbs at best. So I was really suprised when I actually managed 51lb at 27”!
I tillered the bow to 27” as my brother will likely get this bow. His draw length on a good day is about 27”. I took the tillered (albeit unsealed) bow stump shooting for a couple of weeks with only tillering nocks cut in and a leather strip wrapped around the handle to double as a grip and arrow pass. After a hundred plus arrows I checked her over for faults but found none.
I was expecting some of the steam correction to pull out in the deflex section but it didn’t. The finished bow looks like it has a very positive tiller but it is deceptive. The deflex section right out of the top fade is what gives this bow the look of excessive positive tiller.
In reality, this bow feels very well balance through the entire draw cycle and the limbs time together great when I shoot it with split fingers. I’ve shot enough bows over the year to be able to feel when a limb is weaker than the other. Despite the appearance, this bow is very well balanced.
After double checking the bows tiller by feel and then by tiller tree, I confirmed that the top limb is only slightly weaker than the bottom limb which is perfect for both my use, and my brothers use, since we both shoot split fingers.
It never ceases to amaze me how you can take a bow which looks to be tillered very well, only to draw it back and feel that torque on the wrist that you get when one limb is significantly stronger than the other. Nowadays, when it comes to final tiller, I place more emphasis on feel than I do on appearances. Where wooden bows are concerned (especially character bow) appearances are incredibly deceiving!
After shooting and sanding, I weighed her again and she was settled in at 48lbs at 27”. Happy with that I fitted her static recurved tips with a pair of Red Deer antler tip overlays, and I inlayed the arrow pass with a patch of buffalo horn. For the handle I chose a simple leather grip fitted after sealing the finished bow with 8 coats of Tru-Oil.
This bow put a smile on my face. I could well have imagined this bow breaking mid tiller. Not only was I impressed that she held together, but she actually ended up a being a proper little looker too. So much character and more than satisfactory performance has made this little bow one of my favourite character bows so far this year. (I have others to show off soon!)
In terms of performance, with a 12 strand B50 string on she sent a bunch of 450 grain arrows over the chronograph at an average speed of 143ft/sec. Not bad for a knarly old branch bow! Mass is 560 grams and she carries about ¾” of set immediately after unstringing which returns back to almost straight after resting.
Here she is. Enjoy!
Top nock
Top nock
Top nock
Top nock
Top nock
Bottom nock
Bottom nock
Bottom nock
Drawn to 26″
Drawn to 26″
About 3/4″ of set immediately after unstringing. Returns to almost straight after resting.
This is one of the many “lockdown bows” which I made through 2020/21. Having been furloughed for a couple of months I took the opportunity to tinker with a pile of difficult staves which I’d had kicking about for years. A good time to try and sort the potential staves from the firewood!
This bow came from one such stave. It was nothing more than a branch to be honest but was still one of the better potential staves in terms of its overall shape. That said, It was still flawed to some extent with masses of pin knots on what would be the back side of the stave. It also had quite a lot of deflex across the entire length of the back. Especially in what would be the bottom limb.
Despite the imperfections I committed to making a bow from this stave and had long since promised to build a mate of mine a yew recurve. So I made it my mission to honour my promise using this far from optimal Yew branch. The basic plan was to build a 66″ nock to nock” 50-55lb recurve flatbow.
The stave had nice tight growth rings of between 1-2mm thickness but unfortunately carried little heartwood. The sapwood on what would be the back was too thick at around 12mm thick, but due to all the tiny raised pin knots, it would be impossible to properly chase a ring down to a better sapwood thickness without violating the back around all the tiny raised knots.
A trick which I have used many times before in this situation is simply to accept the violation of rings on the back but mitigate against limb failure by sinew backing. So that’s what I decided to do with this bow.
The stave was only 3″ wide so the crown was moderate. Rather than try and reduce the sapwood thickness in a rounded fashion as would be necessary to mimic the natural crown, I decided to just flatten the whole back with a rasp. In doing this I was able to work down to approximately one sapwood growth ring right down the centre line of the bows back and follow that from one end to the other maintaining a totally flat back profile.
Now that I had nearly 50% of the limb represented by heart wood, I roughed out the general limb thicknesses and finalised the face profile. In order to counter the significant deflex I recurved the tips with steam and performed a small amount of dry heat correction to line up the tips and correct some small string alignment issues. Then it was on with 3oz of deer leg sinew, glued on with my own home made sinew glue.
After the backing was completed I wrapped the whole thing up for a few days in cloth strips to keep the sinew from peeling away from inside the recurves and around the handle.
Once I could see that the sinew was dry I unpeeled the wrapping so I could take a peek. To my disappointment some of the sinew had dried out to form some small fissures. I put this down to one reason. Taking way too long to apply the sinew!
I’d timed the sinew application with the kids getting home which invariably led to a pile of requests, Dad jobs and other frivolous distractions all when I’m trying to slap on my glue soaked sinew bundles. Lesson learnt!!
Anyone who has done any amount of sinew backing will tell you that the best sinew jobs are done quickly and smoothly whilst the glue is still warm and not allowed to set up in between bundle applications. Each fresh bundle of sinew wants to be laid down alongside its neighbour before the neighbouring bundle has started to “Gel”. That’s where I’d gone wrong.
All the distractions had led to me applying bundles as and when I got chance as opposed to in one fast fluid operation. This meant that by the time my next sinew bundle got applied it’s neighbour has gelled up reducing the ability of the fresh sinew bundle sticking to it’s neighbouring bundle.
The result is bundles of sinew separating apart from one another when the bundles start to shrink during the drying process. I should add however that the adhesion between the glue soaked sinew and the bow’s back is not affected by this phenomena.
As disappointing as the end result was, the imperfections that I was seeing in the dried backing were only aesthetic. The functionality of the bow’s backing was completely unaffected.
So onwards we went. After the cloth wrappings had been removed and re-tightened several times over the initial drying period (a week), the wrappings came off and the stave was set aside for nearly a year to cure thoroughly.
I’d kept the limbs asymmetric to try and mitigate for the lower limb deflex which was now substantially less than it was. This was due to the sinew backing pulling the stave back about 1 & 1/2″. Now the deflex was only about 3/4″ in total which was a massive improvement as before backing the natural deflex was about 2 “. After coming out of hibernation, deer antler tip overlays were fitted over the top of the sinew and the tillering began.
In order to preserve as much heart wood on the belly as possible I opted to create a slightly rounded albeit mainly flat belly. An arrow shelf was added in the form of a scrap piece of deer antler.
The bow was quick and easy to tiller and looked nice pulled down to 28″. At this point the weight was 58lb which was about right for the guy who would be getting this bow.
Before finishing the bow I shot stumps with it for a couple of weeks then re adjusted the tiller slightly to weaken the top limb just a tad bit more then called her done at 55lb at 28″ with a neutral tiller. (The owner of this bow shoots three under.) To finish I coated the sinew with a good covering of Titebond III so seal and smooth out the sinew. After sanding it was on with 8 coats of Truoil to finish.
The handle was covered with a piece of scrap leather and the same leather in reverse was used to protect the arrow pass.
I really like this bow. It’s a bit heavy in the hand (630Grams) due to the extra weight from the sinew but isn’t really noticeable once you get in the swing of shooting her. The limbs are an even tapper from 1″ 3/8ths at the fades down to 1/2″ at the tips.
This bow made for a snappy shooter which I really enjoyed shooting. I shot her over the chrono to see if she was quicker than usual and, whilst hardly getting blown away by the speed, I was quite happy with the 162ft/sec average that I got with a 500 grain arrow. That’s not bad for a stick and string bow!
This little project was initially just intended to explore how much twist and malformation could be corrected through drying a badly mishappen green field ma[le stave whilst clamped to a form. The stave came out so well that I decided to persevere with it and the project ended up turning into a full bow build. The end result is a nice sweet shooting deflex reflex selfbow. The full build can be seen here: https://southmoorbows.com/build-along-field-maple-deflex-reflex-character-longbow/
As is typical of Field Maple, this stave lacked much in the way of colour or grain so I decided to stain it. Antler tip overlays and a simple black leather handle/arrow pass compliment the natural character of the bow. The limb cross section ranges from crowned/convexed to almost rectangular with some mild valleys, troughs and hills around the few small knots and naturally wavy grain.
Measurements are as follows:
Length Nock to nock: 66″
Limb width at widest point – Top: 2 1/8″ Bottom:2 1/8″
This project started out as a simple short term experiment. I’d had my eye on a clean but crooked and twisted Field Maple limb for quite a while. Trying to envisage where within the limb I could salvage a stave from was difficult. The limb was about 4.5” thick and had a section about 80” long which was relatively clean. In general the limb was sound and free from large knots, pins and other major imperfections.
The 80” section that showed most potential for making a bow stave did have other issues to consider however. This most usable section was badly twisted and had a significant sideways bend in one half of the stave. There was also a very large amount of natural reflex in what would be the middle/handle section.
To start with, I just wondered if it would be possible to improve the shape, twist and alignment of such a misshapen stave whilst it was still green. I’ve performed many shape corrections on green staves before, using forms and clamps, but I’d never before tried to correct asymmetries in a stave which were as server as this without using fully seasoned staves manipulated with steam bending.
I’ve worked with clean Field Maple on many occasions before so understand the potential this wood has for making a very good white wood bow. In the past I’ve used dry heat to correct minor twist and alignment issues on fully seasoned Field Maple staves. I’ve also used steam heat bending on Field Maple staves for more significant bending such as recurving tips or bending handles for alignment issues etc.
The amount of twist and reflex in this Field Maple stave however was way more than I’ve dealt with before. My expectations for this stave were not great. I envisaged the stave resisting the significant forces necessary to bend and twist this green stave into a better shape.
I also expected cracking or delamination to occur in the mid section due to the shear amount of force than would be necessary to pull the twist out using clamps and a drying form. But my expectations were proven wrong!
The green Field Maple stave roughed out and clamped to a reflexed form to try and produce a more workable shape. Note how the tips have been left full width for extra sideways leverage from the clamps. this really helps to pull twist out.
Side view of the green stave being force dried in the mid day sun on an especially hot late summer day. Note the remaining reflex in the handle section.
The reflex in the handle section was going to remain no matter what I did but this was fine as I could imagine this stave potentially turning into a reflex/deflex longbow. By leaving the limbs full width out to the tips I was able to get significant leverage from the clamps positioned on the edges of limbs. This leverage enabled me to crush down on the side of the limb that was pulling away from the form due to the limb twist. This worked really well and the twist between the fades and the limb tips came out beautifully.
The overall shape was made much more even by using the reflexed form too. By forcing the tips to line up with the handle centre I was also able to correct most of the significant string misalignment. Throughout the end of August I left the clamped stave outside in the sun on hot days.
The stave came indoors for a week once the temps dropped and was left on one of my window sills which catches all of the mid day sun. This window sill is like a green house and serves to quickly force dry staves very well. After the stave had been allowed to dry on the form for about a month I removed the clamps to inspect the results.
Plenty of character left but a much more workable shape overall
side view immediately after removing the clamps and form.
The overall twist was reduced from nearly 70 degrees to about 5 degrees. The massive reflex was tamed to something much more manageable and the string alignment was now only a little off to one side. The stave now actually looked perfectly workable with plenty of character remaining, so instead of calling the project done I decided to see what I could do to turn this stave into an actual finished bow.
My next job was to get this stave down to some realistic dimensions. It would be unlikely that this stave was totally dry so by getting close to final dimensions I’d soon get this stave fully dried and ready for tillering.
Marking out the limb tips. I’d decided to plan for fine antler tip overlays on this bow so initially I laid the rough tip design out to 20mm tapering out to full width at mid limb.
Marking out the rough outer limb shape using my steel ruler to follow the natural curves of this stave. The final shape however will be dictated by the grain itself rather than by lines.
Working down to my lines with the draw knife. Field Maple is a wonderful wood to use cutting tools on.
The approximate shape of the bottom limb. I decided to go for a classic willow leaf shape and carry the tapper from mid limb out to the tips. This stave was initially roughed out to 2 ¼” wide which is what the stave measures in this picture. I may reduce this width to 2” before tillering though.
Top limb roughed out to the same approximate dimensions as the bottom limb. The top limb will be the straighter of the two limbs.
The string alignment appears to be favouring the left side of this picture which suits the decision to make the nearest limb the top limb. This will result in the arrow favouring the left hand side of the bow which suits me as a right handed archer.
Now to reduce the limb thickness to something more like ready for tillering.
Field Maple is a dense wood so these 14+mm thick limbs will need quite a bit of reducing in order to get them to a point where the tillering process can begin. I’m going to aim for 14mm fade end thickness tapering down to 10mm side thickness at the tips. I want the tips to do a very small amount of work on this bow so I will reduce them down to 10 mm but keep away from them when tillering. This should Keep the last 6” of the tips stiffer than the working section of the limb, but without leaving the tips carrying unnecessary mass which would be the consequence of keeping the tips thick enough to ensure that they are completely static.
Working down to my lines with the draw knife.One edge worked down to the line.
Same on the other side.
Bringing both sides together to make the limb initially flat on the belly.
There are only a couple of knots on this stave which look like they will fall of the bow as more material gets removed.
This limb is now approximately 14mm thick as it leaves the fades tappering down to 10mm thick at the tips.
5 minutes with the Shinto rasp makes sure everything is nice and flat with an even thickness taper. I like the Shinto rasp for this job because it is easy to keep flat. Whilst it’s great for working down flat sections, it won’t get into dips etc very well.
Following the dips and humps on the belly to make sure the edge thickness is even. The half round rasp comes in handy here.
A quick scrap with the card scrapper and the basic limb thickness is ready for finer scrutiny.
A nice bit of wiggle to work with.
When I work the face down to rough dimensions on any bow, I always let the grain dictate the limb shape. This avoids creating grain run out which in my experience is a fast way to limb failure.
Next I needed to get the cambium off the back of the stave.
Until the cambium has been thinned right down I can’t get a true handle on the real thickness of all parts of the limb. I tend to leave quite a lot of cambium on a stave right through to the limb thickness reduction phase as the cambium layer acts as a good layer of protection to the back of the bow. A cushion against scrapes and scratches is a good idea whenever the back of a bow will be seen on the finished bow. Since this bow will not be backed the natural appearance of the first layer of wood below the cambium will be displayed on the finished bow so taking care to protect the back of this stave is important.
The valleys and troughs on the back require the use of a gouge to get down through the cambium to wood.The curved scrapper is used to expose the first layer of wood.
Personally I like the appearance of self bows which have a little bit of cambium left on the back of the bow. This little bit of cambium adds to the beauty of the finished bow and confirms to the observer that the back of the bow is in actual fact the very wood which once grew directly beneath the bark. No ring chasing necessary. This remaining cambium also creates a beautiful camouflaged effect on the back of the bow.
The curved scrapper can get into most of the valleys and troughs and can be useful for working around raised spots like knots too.
As tempting as it often is to hog at the cambium with a draw knife it is too easy to nick the underlying wood and compromise the back of the bow so I always proceed with caution using a scraper for raised spots in particular.
A small gouge comes in handy at times.
The back of this stave has an undulating topography which presents as hills, valleys and troughs. If I were to leave the belly completely flat in cross section then the hills on the back would act as stiff points and the valleys and troughs would act as weak spots. To counter this potential problem I contour the bellies on my wide limb bows so that the belly topography matches that of the back but in reverse. To achieve this I use a mixture of gouges and curved scrapers to remove material from the belly directly opposite the hilly thicker spots on the back. This enables me to leave material behind over the thinner valley and trough areas of the back. This affords them extra protection and creates a truly even thickness across the entire width of the limb.
Here is an example of where there is a hill on the back creating a thick spot. I’ll counter for this by scraping away material on the belly which is directly opposite the high point on the back.
I use my fingers to feel the thickness across the whole limb. If I find a thick spot I’ll remove material from the belly until the thickness is the same as everywhere else nearby. I’m aiming to end up with limbs which are an even taper of 14mm – 10mm thick along the entire length and width of the bow. This means that areas of the back which present as high crowned will have a corresponding belly section which is effectively hollowed out to counter for the crowned back. This stave has a mixture of high crown plus flatter sections with hills, valleys and troughs so the belly will end up being far from flat.
I use my fingers and thumbs to feel for differences in thickness. Once I’ve found a thick spot then the curved scraper gets called into action.Constantly checking for even thickness.Trying to mirror the back on the belly.
Here you can see than I’ve dug out a trough on one side of the limbs belly to replicate what is happening to the surface wood directly opposite on the back of the stave.
Here the limb has a notable crown so the whole width of the belly is hollowed out to compensate.
This limb has a 12” section which has a high crown so the belly here will have a correspondingly hollow profile. Maple is a wonderful wood to work with a scrapper.
Countering the excessive reflex in the handle with some deflex in the limbs.
The next job was to put some deflex into the limbs to counter for the reflex in the handle section. I do this with the flat back of a form and some padded blocks and a clamp to create the right shape. I’m aiming to create most of the deflex around the first third of the limb about 6 – 12” out from the ends of the fades.
Here I’m using a heat gun to gently heat up the belly. I make sure I heat both sides of the clamp to make sure the deflex is evenly distributed throughout the first two thirds of the limb.
After about 10 minutes of heating the belly and the sides I then leave it to cool for an hour.
After both limbs have totally cooled I check both limbs for twist. Both limbs could do with a little bit of a correction so I fit a scrap piece of wood to each limb so that I can lever the limbs into a better position.
Once again the heat gun is used to heat the sections of the limbs which I want to correct
I’m carful where I choose to heat as I want to flick the tips on this stave and realise that if I make an early heat correction to a limb near the tips then the steaming of the tips which takes place later will pull the previous heat correction back out when the heat from the steaming travels down to where the twist correction was made.
Now that the limb twist has been dealt with I steam the tips for half an hour so than I can put a small amount of reflex into them.
I’m a fan of longbows but enjoy the lack of stack which a recurve benefits from. Whilst not wanting to go for a full recurve design on this bow I did like the idea of balancing the deflex and reducing stack a little by flicking the tips on what is aimed at finishing up a longbow.
After half an hour over the pan I fit my steel ruler to the belly of the stave using a small G clamp and a packing block to protect the back from clamping pressure. I frequently do this as it really helps prevent the belly tips from delaminating when being bent over the recurve form. The extra support of the flexible steel ruler simply stops a splinter lifting on the belly which is the kiss of death to many would be bows. This trick is especially important if your stave tip belly is not presenting as one growth ring, which is the case here. On this particular stave, both tips span two growth rings so delamination is a high probability without the ruler acting as a brace.
Into the recurve form she goes. My oven door handles act as the perfect brace to hold the stave in position whilst left to cool for half an hour.The flat wooden spatula which you can see stuffed into the tip acts as a wedge to hold both the limb tip and the steel ruler in place. The old tea towel just prevents the back of the limb tip getting marked by the form. This is how I do most of my recurves/flicked tips.Both tips flicked.After a rest overnight to cool and re aclimatise the stave is now looking quite nice and even from the side profile.
The tips are both kicking out in opposite directions which will call for a little more heat twisting in order to get them lined up.
I’m keeping any further adjustments away from the tips so as not to cause the recurves to fall out. I will give both limbs a bit of a twist with the heat gun then recheck for tip alignment and string alignment overall.
By griping the upper third of the limb in the padded jaws of my vice and fitting the other limb with a wooden paddle I can lever a significant amount of counter twist into the mid limb section.
I have to be careful at this point to make sure that the deflex that has already been put in is not lost. I make sure to protect the deflex by setting up the paddle so that the leverage is the direction that promotes flexion to the limb rather than extension. This trick will ensure that the deflex is preserved.
Now would be a good time to roughly shape the handle.
I thought about including an arrow shelf on this bow and certainly had plenty of wood left with which to do that, but I fancied going old school and figured a simple handle for off the knuckle shooting would complement the natural lines of this stave best.
Working down to my lines with the draw knife first.Hitting my lines accurately and achieving handle symmetry with the Shinto rasp.
Three inch fades rounded into a classic willow leaf shape.
Rounding the corners on the back. I sometimes like a spokeshave for this job.Cleaning up the corners and the sides and making sure the face profile is finalised before tillering starts. Next job – tip overlays!
Bottom nock with string groove cut. Both overlays are left wide for now and will be thinned down quite a bit before the bow is finished. I like quite fine tips on willow leaf shaped limbs.
I’m heat treating both flicked tips here in order to prevent the bend pulling out once tillering begins. I also quite like the dark coloured tips which results from only targeting the last 6” of the limb. The dark colour contrasts nicely with the lighter untreated belly wood.Now that the overlays are functional I can eyeball the tips and handle for alignment. The string biased towards the left side of the bow appears a little too strong so I decide to heat the handle area for a correction.The handle is quite thick so I opt for setting the stave over the wood burner top whilst fitted to a bending jig.
The depth of heat penetration that you get with this method is significantly greater than can be achieved with a heat gun. After 45 minutes the handle section is scolding hot so the stave is manipulated into alignments and then comes off the heat and is allowed to cool for an hour. After the jig comes off I check for alignment and am happy to see that the correction has brought string alignment back to just favouring the left side which is perfect for a right handed archer such as me.
Roughly shaping the handle before starting the tillering process.Deflex reflex staves are always easier to tiller as the even shape has already been achieved through the various heat bending processes.
This stave is heavy but almost braceable right out the gate. After about 15 mins of long string tillering on the tiller tree the bow can be strung at a 6” brace height.
The left limb in the picture above is the bottom limb and is slightly weaker than the right limb which the top limb. I shoot split fingers so want this bow to finish out with an 1/8″ – 1/4 ” positive tiller. This was opposite to what the bow was doing at brace so I needed to reduce to top limb to swing the balance the other way. This is fine though as at this point, the bow is still quite heavy. I’m a short drawer so I’m aiming for 50lbs at 26”. At the minute I’m still getting 50lb at 22” so I spend an hour carefully reducing the weight of the top limb and tickling away at any stiff spots overall.
Bow unstrung after tillering to 53lb @ 26″
I’ve now got the stave down to 53lb at 26″ on the tillering tree. The extra 3lbs will likely come off as the bow is fine tillered and sanded after being shot in. both strung and unstrung I’ve got a really nice even balance of reflex in the handle and tips combined with a nice bit of mid limb deflex. The flicked tips haven’t pulled out and the string alignment is still just slightly biased towards the left side of the bow which for me as a right handed shooter is perfect. No signs of chrysaling anywhere on the belly and no splinters to be seen on the back. Time to get a handle wrap on and shoot her in.
A scrap piece of buckskin leather will do for now.
I always shoot a couple of hundred arrows through all of my unfinished bows before sanding and finishing. I’ve learnt that a bow which has been meticulously tillered on the tillering tree will move considerably through actual shooting. After two hundred shot you know what you have. I then recheck my tiller and adjust accordingly.
Happy with the final tiller it’s time to finish this bow. I start with 120 grit followed by 200 grit followed by 000 wire wool.Next I wet the whole bow down with plain water to raise the grain.After a day to dry thoroughly the grain gets hit back down with 000 wire wool.Then its on with an oil based stain and many coats of Truoil to finish.
I love using deer antler for tip overlays on primitive bows. Not only does antler function well as a material for tip overlays, it also looks amazing. And given that primitive bow hunters both past and present have relished the opportunity to hunt deer, it seems fitting that a material from such a prestigious quary species should be used to enhance and embellish a primitive bow.
In this article I’d like to share my 4 most important principles to making beautiful, functional and efficient deer antler tip overlays.
For this project, you will need the following tools, materials and equipment:
An unfinished bow stave without nocks already fitted.
Suitable sized pieces of deer antler cut from the coronet end of an antler.
A wood saw with small to medium sized teeth.
A rasp/coarse file/belt sander.
Titebond III wood glue.
Spring clamp.
Vice.
Wet kitchen towel.
Tile saw (optional).
Chainsaw file.
Sandpaper 80/100/120 grit.
Principle # 1 – Select the right type of antler.
For the purpose of making deer antler tip overlays, you will not want to use a piece of antler which is full of the pithy porous honeycomb like structure that you will typically find in antler from sections anywhere other than the coronet end of the antler. Antler from the coronet end is very nearly solid all the way through. Antler from anywhere else is effectively hollow from all the micro holes. Maximise the strength of your antler tip overlays by ensuring that your overlay material of choice is solid, or at least as close to solid as is possible.
For this tip overlay project I’ve decided to use red deer antler. The piece on the left is the coronet end from a yearling red stag and is perfect. The piece on the right is cut from the middle of an antler and has the typical hollow, porous appearance. I’ll be using the piece on the left.
Principle # 2 – Achieve the basic shape and profile of your tip overlays BEFORE you glue them on.
Don’t be tempted to simply saw your antler into blocks and then glue then on with a view to shaping them later. Shape then first before gluing!
This antler has some nice features which, with care and planning, could be carried over into the final appearance of the tip overlays.
I often see people take a tip overlay material such as antler and simply glue a chunk of it to the tips of their bows. Once the glue has set, they will then set about shaping the overlay.
The problem I see with this method is that the desirable character of antler is mainly at the surface level. It therefore cannot be optimised for inclusion in the final shape and appearance of the overlay unless these characters conform to the desirable shape and profile of the finished overlay.
If a chunk of antler has simply been glued on to a bow tip before shaping, the shape of the chunk of antler will likely be nothing like what is required of the finished overlay. As the functionality of the overlay will take precedence over its beauty, optimising shape and profile will rank more important than aesthetic appeal.
The absence of appropriate shape and profile will necessitate the removal of the surface material. This will result in the removal of much, if not all of the surface material along with all of the desirable characteristics and features of antler.
For example, if a chunk of antler with beautiful pearling is simply stuck on to a bow tip before shaping, the likelihood of that pearling remaining within the final shape and profile of the overlay after surface material has been removed is very low.
To put it another way, the amount of material which will need to be removed in order to obtain the final shape and profile of the overlay will have resulted in much of the antlers character being removed.
By shaping your overlay before gluing them on you will be able to optimise the inclusion of desirable features whilst prioritising the removal of unwanted material from areas which have undesirable feature. Examples of a desirable features might include the natural colours, shapes and pattern of pearling. Example of undesirable features might include the porous backside of the overlay or a plain spot which lacks any colour or features.
Once I have selected a good piece of antler I will select which part I want to use based on its appearance and its internal structure and integrity. The piece I choose to work with will then be ripped down the middle to create two equal albeit oversized slabs of antler.
The pithy middles of the pieces in this picture is minimal and will be ground away as the profile is finalised leaving behind solid antler for maximum overlay strength. By prioritising the removal of material from the back of the overlay I will be able to retain as much character from the upper surface as possible.Here I’m using my Shinto rasp to flatten the sides of my overlay pieces so that they are easier to grip in the vice. By doing this first I will be able to secure each overlay well enough to rasp away the undesirable portions of material whilst retaining and incorporating the desirable features into the final design.Rasps are useful tools when it comes to shaping antler. Rasps remove material fast and efficiently so are ideal tools for achieving the basic shape and profile requirements.Basic face width ready to be reduced into the basic shape and profile.Now that I can grip the pieces in the vice, I can work on using my rasps to shape the basic top profile. I want to retain some of the colour and pearling whilst at the same time achieving an efficient design.By mounting the Shinto rasp in the vice, I can grind the antler pieces against the cutting face and shape the face of the overlay with ease. This method helps keep everything nice and flat.Basic rounded top profile achieved. Note how I have retained enough of the dark brown colour to contrast beautifully against the ivory cream colour of the exposed underlying internal antler material.Now I’m switching my attention to the back side of the overlay. This is where the bulk of the waste material will be removed from. This will facilitate the creation of the classic wedge-shaped taper which enables a beautiful, natural and functional transition from the overlay to the back of the bow.
It is important that the angle of your overlays taper is nice and low. I aim for around 10 degrees. This will allow for easy stringing of your bow. If you choose too steep an angle, you will find that when you come to string your bow, the string loop meets the transition to the overlay and comes to an abrupt halt rather than slipping smoothly over the overlay and into the string groove.
Here I have gripped the top end of the overlay piece in the vice so that I can rasp away at the underside of the overlay to produce the basic wedge shape. I have pushed a scrapper in underneath the bottom end of the overlay in order to stop it from getting pushed down into the jaws of the vice as I apply top-down pressure from the rasp.Here I am finalising the wedge shape and thickness. By simply dragging the overlay towards me across the fine face on the Shinto rasp I can rapidly remove excess material from the underside of the overlay piece. Used this way the Shinto rasp is a great tool for creating a perfectly flat base. This makes matching the overlay to the back of the bow tip much easier later on.A final functional wedge shape has been achieved whilst retaining maximum aesthetic appeal. Notice how the small amount of porous pith that was previously visible has now gone. I’m now just left with solid antler which will maximise the strength of the overlay. If I’d chosen a piece of antler from further up the antler then the pithy middle would still remain a considerable part of the overlay and would therefore compromise the structural integrity of the overlay once the string groove was cut in. The retention of the pith would likely result in a break at the string groove at some point in the future.A view from on top. You can see that this overlay has been left much wider than it needs to be. This excessive temporary width is helpful at this stage and throughout the gluing stage. The final width can easily be achieved once the overlay is secured in position.
Now that the basic shape and profile is complete, there will be very little work to do to the top of the overlay after it has been glued on. Since there will be no need to take any more tools to the top of the overlay, the risk of damaging the back of the bow where the overlay transitions to wood is reduced significantly.
Principle # 3 – Create the strongest bond possible.
A bow is only as strong as its weakest point. Any joint is likely to be a weak point. With that in mind it is critical that all joints be made as strong as is possible.
Your bow string will sit directly on top of your tip overlays and receive the full force of your bows draw weight. Any torque will be felt by the tip overlays too. It is therefore imperative that the bond which you establish between your tip overlays and the back of your bow is made as strong as possible. We can maximise the strength of our tip overlay joint by ensuring three things have been attended to.
Firstly we must maximise the contact surface area between the components which are to be joined. In this instance we are talking about the roughly shaped overlay being jointed to the wooden tip of our primitive bow.
By making sure that your tip overlays are at least 1” long we are providing adequate surface area to create a large enough contact area to create a strong enough bond. Personally, I like to make my overlay a little longer than this and typically make my overlays between 1 ½” and 2” long. On static tips you could make your overlays even longer of course.
Let us assume we have made sure that our tip overlays have a contact surface area which is at least 1” X 3/8”” wide. Now we must optimise the contact between the two surfaces by making sure that the two faces to be joined together are as well fitted to one another as is reasonably possible.
Creating a flat surface on the limb tip to optimise the fit between the overlay and the back of the bow tip.
By flattening the stave tips ready to receive the overlays we can begin to check how well the two surfaces match up. I like to take my time here and make sure that the two contact surfaces meet up perfectly before gluing. Don’t rush this part. Take the time to make sure that the two surfaces match up without any gaps.
Go careful when you start to flatten your bow tips. It is easy to get carried away and compromise the growth ring which forms the back of your bow. If this happens beneath your overlay, then it will not be an issue as the overlay will distribute the stresses back to the outer growth ring.
If, however, you accidently cut through the growth ring on the back of your bow ahead of your overlay then you will likely break the whole tip off your bow when you come to draw it. Always make sure that the transition from bow back to overlay occurs on the actual growth ring which makes up the back of your bow.
Once the rasp has levelled the tip and the overlay has been tested for fit, sand out any tool marks so that you do not have to try and removed tool marks after the overlay has been fitted.Once both surfaces are matched up perfectly and all the tool marks have been sanded out of the back of the bow tip, don’t waste any time getting you overlays glued up and clamped.
Wood absorbs glue much more readily when freshly exposed wood cells make up the surface layer to be glued. If you leave your prepared bow tips for any amount of time then, the freshly exposed surface layer of the wood will lose some of its ability to soak up the glue. Freshly exposed wood is hydrophilic. However, even after a short amount of time has lapsed, the exposed wood surface soon reverts back to being somewhat hydrophobic. So, get you bow tips and overlays matched up and glued up ASAP for the strongest possible bond.
Stave tips ready for sizing up with TBIII.
The second thing to consider when trying to create the strongest possible bond is which adhesive to use. I’ve tried all kinds of adhesives over the years but always find myself coming back to Titebond. I’m currently using the MK III stuff and am happy to report that it really is a great adhesive for gluing most natural materials to wood.
TBIII applied liberally but only on the contact areas.
If you are planning on using a stain on your finished bow then try and avoid getting glue anywhere other than the contact surface of you overlay area. Any glue that gets on the back of your bow will get soaked into the surface layers of the wood. This creates an impermeable layer which can prevent the absorption of stains at a later date. If this happens then you may need to intervene in order to avoid unsightly patches of unstained wood. You may have to scrap/sand away the upper layers of wood cells from affected areas in order to allow a stain to penetrate evenly across all parts of the bow.
I always like to glue up both contact surfaces. I also make a habit of leaving both glued surfaces to soak up some glue before positioning the two surfaces together for clamping. I believe this “sizing up” habit allows more time for the freshly exposed wood cells to suck up more glue. In fact, with wood that has been dried down to below 10% moisture content, it is often the case that more glue needs to be added after 5 minutes of sizing up. This is because much of the glue will now have been sucked up into the wood emphasising the need for an additional application of glue before placing the overlay in situ ready for clamping.
The third consideration to be made in order to create the strongest bond possible is the method of clamping used to press the glued surfaces together.
Making sure the excess glue is wiped off whilst it is still wet. I use a wet piece of kitchen towel for this.
I find that if I apply significant compression to an overlay immediately after gluing up, all that happens is the overlay slips off the tip. To avoid this from happening, I only use slight pressure from a spring grip type clamp for the first 10 – 15 minutes of drying. This allows the glue to soak as deep as possible into the wood and start to grip the overlay into position. By doing this you will stop the overlay from simply slipping off the stave tip when the compression is increased to full pressure.
After 10-15 minutes I remove the spring clamp and insert the bow tip carrying the overlay into the jaws of my vice. From here I can crank up the pressure to make sure that the bond is really good and strong. The pressure which can be exerted from the vice will ensure that no gapes appear at the joint line.
Be sensible with the amount of pressure applied to the overlay/bow tip and use something reasonably soft as a packing material to protect the bow tip and the overlay from damage from the metal jaws of the vice. I use scraps of leather for this purpose.
Here is the bow tip with the glued-up overlay in situ, set in the vice to cure under pressure. I leave it set up like this in the vice overnight.
I’ve never had an overlay come off when the join has been prepared, glued and clamped it the manner described above. The same can’t be said for the common practice of using superglue and a spring clamp!
After at least 6 hours of drying time, you should now be able to finalise the shape and profile of your tip overlays. Before you grab your tools and start working on the final appearance of you bow tips and overlays, take the time to ensure that the strength of your overlays will not be compromised by their final design.
The maintenance of strength needs to be given priority. A broken tip overlay is a significant repair at best, a broken bow at worst. Very fine bow tips are very popular these days but as tempting as it may be to reduce the width of your tip overlays to the bare minimum, antler is quite brittle and can snap under load if reduced too much.
An overstressed antler tip overlay will typically break at the string groove. To mitigate against this, I like to leave at least 5mm of material in the string groove. In order to achieve this, I find that an antler tip overlay needs to be at least 7/16th” wide and 3/8th”thick. I also like to leave the bottom overlay bluntly tipped because the bottom tip is always more likely to get knocked than the top tip.
Whilst you could leave your overlays much wider and thicker than this, by leaving excessive material at the tips you will be leaving unnecessary mass in the very tips of your bow. This additional mass will affect the performance of your bow albeit in a very subtle way. If maximising speed and minimising hand shock is important to you then aim to achieve a final shape and profile which reduces mass to a minimum whilst preserving strength.
Beauty is in the eye of the beholder. That said, long thin antler tip overlays are very easy on the eye. Especially if a suitable amount of antler colour and pearling has been retained during the shaping process. Play with a few different shapes and profiles and see what works for you.
After a night to dry I work the tips down to a basic profile with rasps, files and 80 grit sandpaper. The top tip will be pointed and the bottom tip will have a slightly more blunted appearance as a hedge against knocks.Filing out the rasp marks once the basic shape has been achieved.
The bottom tip overlay ready for string grooves.
The top tip overlay ready for string grooves.
Note that I will often leave both tip overlays oversized until after tillering is complete. Then I will refine the shape and profile to suit my overall bow design and appearance.
I use a tile saw to cut the initial tillering string groove on antler tip overlays as it removes material fast and accurately. Once tillering is completed, I’ll finish off the string grooves with a chainsaw file and sandpaper.
I like quite fine tips on willow leaf shaped limbs. These overlays are on a bow with some character. Since these particular limb tips are angled out due to the naturally curved out limbs, it was necessary to carry the string groove around the sides of the overlay to ensure that the string did not slip off the sides. This can happen on crooked limb tips which only have a groove cut across the face of the overlay.
Finished antler tip overlay (bottom nock). Note the rounded profile I’ve gone for on this lower limb nock. This design is simply to minimise the effects of a potential impact with the ground.Bottom limb tip overlay viewed from the side.Top limb tip overlay. Since this overlay will be less likely to impact with the ground etc I’ve gone for the more typical pointed profile.Top Limb tip overlay viewed from the side.
So to recap, before you embark on your next antler tip overlay project, be sure to take the time to:
Select the right type of antler first. Then make the effort to achieve the basic shape and profile of your tip overlays BEFORE you glue them on. Work through the steps necessary to create the strongest bond possible. And finally finish your overlays in a way which is guaranteed to maximise strength, minimise mass, whilst emphasising the beauty of this magnificent natural material.