Tag Archives: Deer Antler

Primitive Hawthorn Flat bow 52#@28″ (Bow No. 15)

A good friend of mine does a fair bit of hedge laying through the winter months and has been kind enough to supply me with several nice bow staves over the years. Most of these staves have been Elm, Ash and Hazel. One bow wood which I’ve been badgering him about for years is Hawthorn. So it came as a nice surprise when he walked me out to his shed to show me what he’d accumulated for me over the winter. Because sat in the rafters was a reasonably clean, straight and fairly untwisted 70” long Hawthorn stave!

When I say “clean and straight” I mean by Hawthorn standards. The best of hawthorn would still deter all but the most insane of bowyers (like me). And by “untwisted”, what I actually mean is propeller twist of less than 45 degrees, because around here at least, if you can find a Hawthorn stave with less than 45 degrees of twist then boy have you done good!!

I like to split my bow wood logs into staves, and I could have done that with this hawthorn log as it was about 5” in diameter. Trouble is, every time I try this with hawthorn, it splits out into a spiral of doom, terminating with a grain run out which you can absolutely guarantee will run across the proportion of the log which would have made for the back of your bow. I was not going to take that risk with this precious log!

Hawthorn is nice bow wood. Let me explain what I mean by such a statement as there will be seasoned bowyers reading this that will screw their faces up at the very thought of using such a problem laden wood for bows. Hawthorn, with its twist, knots, interlocking grain and undulating back topography will certainly challenge the best of us. But with a bit of patience, and the right design, Hawthorn can make for a powerful, hard hitting bow which will rival many yew bows in terms of performance.

Hawthorn, like most UK thorn species, is more flexible and springy than many other white woods. Most whitewoods in my experience are quite stiff. Hawthorn however is one of only a few whitewoods which has about the right balance between tension and compression strength. Most white woods, at least here in the UK, are very strong in tension, but they lack the compression strength necessary to withstand the crushing forces which the bellies of whitewood bows routinely experience. This creates a challenge for bowyers and requires consideration to be given to bow design in order to mitigate the problems of using such tension strong woods.

Hawthorn is a bit different. Hawthorn has a much more balanced distribution of tension and compression strength. In fact I’d estimate the balance between tension and compression to be pretty close to even. With all that said, correct bow design is still important when using hawthorn, but not as important as when using woods like Ash and Hazel. Leave too much back wood working on a compression weak white wood like hazel, or worst still, not enough belly wood working, and you will experience fretting on the belly for sure. And that’s even with a perfectly tillered bow.

For this reason I typically reduce the amount of back wood which is truly working on most whitewood bows. This can be done a couple of ways. An example would be to use a stave with a naturally moderate to high crown. A high crown ensures that only the central section of the back is working and therefore coming under tension. Another way to balance the tension and compression forces on a tension strong wood could be to keep the entire width of the belly nice and flat so that all of the belly is working against the compression forces brought about by the tension strong back. Heat treating the bellies of compression weak timbers can also help to strengthen the compressive qualities of woods with weak bellies. But go careful with heat treating. Cook it for too long and you can make belly wood even weaker.

But none of this is necessary with Hawthorn. On a hawthorn flat bow at least, you can have just as much back wood as belly wood working and you will likely not experience chrysaling. Or at least you won’t as long as you have a well designed and tillered stick without any hinges of course!.

Heat treating the bellies of Hawthorn bows is unnecessary in my experience. Whilst heat treating woods like Ash, Elm and Hazel will undoubtedly make these woods behave more springy, Hawthorn is plenty springy enough just as it comes.

A conversation about hawthorn as a bow wood wouldn’t be complete without touching upon the down sides however. And one of the main down sides to Hawthorn is its tendency to check quite badly during the seasoning process. For this reason I work all of my Hawthorn staves down to as close to final dimensions as I dare. And I do this as soon after felling as is humanly possible.

Normally, if I’ve felled a Hawthorn stave myself, I’ll be planning to get the bark off and work it down to within a couple of millimetres of final dimensions the same day as I felled it. That way I’ll be sure to have removed the bulk of the staves pith therefore significantly reducing the very real risk of the stave splitting out from the bark right to the central pith of the log. That kind of splitting happens very quickly with Hawthorn. And you can bet your bottom dollar that if a drying check does emerge, it will be right through the face which you intend to use as the back of your bow!

The Hawthorn log which my mate had kindly stashed away for me had indeed split and badly. But since the whole log was relatively clean of knots, I was fortunately able to find a face which did not contain one of the deep drying splits.

Once home I set to the log with my axe and within half an hour I had a roughed out stave without any major nightmares to contend with. I was very careful to follow the grain with the axe as the natural tendency of the grain was to spiral. Fortunately the amount of spiral in the log was manageable and ended up being about 30 degrees of propeller twist.

Since this stave was still wearing its bark, the next thing I needed to do was get the bark off. Since the log was cut in the middle of winter, the bark was stuck on good and proper, so I took the draw knife to the bark with a view to leaving a trace of cambium behind to serve as some level of protection whilst the stave was being worked on.

Once the bark was off, I clamped the stave to a flat form and parked the clamped stave in a warm spot for a couple of weeks. The stave was still very green at this point so I was hoping to use the opportunity to clamp out some of the twist on the form whilst the stave was still able to lose a significant proportion of its heavy moisture content.

When the stave finally came off the form, it had actually gained a fraction of reflex. Some of the twist had come out but about 10 degrees remained and would have to be heated out at a later date. For now though, I needed to get the moisture content down to as low as I could get it, which normally works out around 6 – 8%.

I have a room in my house which is both warm and has low humidity. I built a bow rack in this room so that I can store all of my wooden bows, and all of my drying roughed out bow staves, without the risk of them gaining moisture or getting bent out of tiller. The rack enables me to keep all of my bows lying horizontally, whilst being supported at only two points situated approximately mid limb. This ensures that the distribution of gravitational force is equal across my bows whilst they are not in use.

The wall against which the bows supports are fixed is the back of my chimney breast, so when the wood burning stove is in use, the wall gets nice and warm. This increases the ambient temperature within the whole room, but especially around the immediate vicinity of the bow rack. 

This slow and steady maintenance of warmth, combined with a dehumidifier situated in the middle of the property, really speeds up the drying process of green staves. Especially during the winter months, which is when I like to cut most of my bow staves. This arrangement also keeps all of my finished bows at below 8% moisture content all year round. So with this set up in mind, within just a few weeks I was able to get this stave down to a point where it was not losing any more weight.

So once the weight loss had completely ceased, I set about fixing the 10 degrees of remaining propeller twist. Some dry heat applied to the fades and limb tips and some strategic application of force in the right direction got the twist out easily. Another benefit of using Hawthorn as bow wood is that it bends quite easily with both dry and steam heat.

In fact, as long as a piece of hawthorn is clear of knots, some pretty aggressive bends can be put into Hawthorn using steam. And dry heat can move Hawthorn a good bit too. I wouldn’t say that Hawthorn heat bends almost as well as yew. Or at least it certainly bends much better than most other white woods!

Whilst I was in bending mode, I used the heat gun to very slightly flick the tips and perfect the string alignment, which was pretty good from the start. Then after a day to reacclimatise after all that heating, I set about finalising the face profile which had been left excessively wide to facilitate better torque when using my G clamps to pull the twist out.

The design I was planning for this stave was nothing fancy. I just wanted a nice, clean, functional, hard shooting right handed flat bow. My idea was for something in the region of 50-60lbs at 28” with a pyramidal face profile merging long fades and nice fine semi static, lightly flicked tips. These tips would be fitted with overlays. The handle would be 4” long, rigid, and without a shelf and inlayed with antler at the arrow pass.

Since the limb face profiles were tapering evenly through the working sections, I wanted to keep the tiller elliptical so as to spread the work evenly across the whole of both limbs. For this reason I also decided to only very slightly flick the semi static tips. This design would maximise the retention of as much of the slight overall reflex as possible. And for the same reason, since the overall length of the stave was now 66” after cutting of the split ends, I was looking to maintain all of that length in the finished bow. This gave me plenty of bow to provide long working limb sections which would help avoid any risk of overstressing a bow which was destined to be drawn to 28”.

With the face profile finished and the handle and fades basic shape finalised, I set the working limb thickness up as close to even as possible. The back of the bow was carrying some undulation and a significant knot presented in the middle of the inner third of the lower limb, so with the gouge and the curved scraper, I followed the limb thickness up and over all the high and low spots to mirror on the belly what was presenting on the back. As time consuming as this process is, it really is worth it in my opinion as it ensures true, even distribution of thickness across the length and width of the limbs. This in turn increases the likelihood of achieving an even distribution of tension and compression throughout the entire length and width of the working sections of the limbs. Extra meat was left around the large knot to provide some extra strength there.

Before proceeding to tillering I wanted to experiment with a process which I’d been wanting to try for some time. This process is called “fuming”. I’d come across this process whilst drooling over some of the beautiful works of art produced by seasoned bowyer Simon Sieß who’s inspirational and informative website can be found here: Stonehill Primitive Bows – Handing the flame on since 2005 (primitive-bows.com)

Simon and I have shared conversations in the past about the whole process of using ammonia fumes to colour and darken tannin rich woods like hawthorn. Simon has a great article on his website which details the process of fuming and can be found here: Fuming experiments – Stonehill Primitive Bows (primitive-bows.com) Inspired by Simon to try fuming hawthorn, I set about following his advice and proceeded to fume this hawthorn stave for two weeks. The colour transformation was wonderful! And the colour transformation had penetrated deeply throughout the fibres of the entire bow, just as Simon had described. Thank you Simon!!

After letting the now damp fumed stave dry for another couple of weeks to remove the strong smell of ammonia as well as restore the staves pre fuming mass, I was now ready to start long string tillering. So I cut in some tillering nocks so that I could get the long string on and see what she looked like when pulled down an inch or two on the tillering tree. A bit stiff in the out thirds was my first thought and the bottom limb was looking considerably stronger than the top limb. So after letting off the outers, and dropping some wood off the whole of the bottom limb things were starting to look quite balanced.

Once I’d got her down to brace height I could see that a little bit of limb twist had returned so a little more dry heat in the top limb got things back to nice and even. I could also now see that a 4” section in the middle of the bottom limb was carrying a bit more reflex than everywhere else. This was resulting in the appearance of a very heavy positive tiller. I decided to heat this reflex out a little to create a more even overall reflex of the bottom limb. This resulted in a much more even looking side profile at brace whilst still maintaining a 3/16” positive tiller overall.

After achieving as good an elliptical tiller as I could I began pulling her down a bit further. I stopped at 22” I checked the draw weight. I was getting around 55lbs at 22” so clearly had a bit of wood still to remove before I could push on down to 26”. So I kept on perfecting both limbs by carefully removing more wood from the bellies of both limb wherever I figured I could improve the evenness of limb thickness or the visual presentation of bend.

Once I was down to 52lbs at 26” I called her done. No signs of any overstressing were noticed and overall, set was minimised to about 1/4 of an inch, which is what I would expect from a nice dry hawthorn stave. Since I was now close to shooting her in, I shaped the handle up to facilitate putting a few arrows through her. Since this required the removal of a fair bit of wood from the handle and fade sections I thought I’d better recheck the string alignment to see if there had been any change. I could now see that the alignment had shifted slightly away in the direction of the right side of the bow.

Since this bow was intended for right handed shooting, I really wanted any string bias to favour the left side of the bow, so I gently reheated the handle section with dry heat once more and eased the tips back across to the left hand side of the bow. Once cooled off thoroughly a quick recheck of alignment with the help of a piece of string and some hand clamps now confirmed that the string alignment was back to just favouring the left side as originally planned. Perfect for a right handed shooter.

Time to shoot in the last 2” of tiller. On went a piece of leather strip would make do for a quick and simple handle wrap/arrow pass. Then out we went for some stump shooting. I like to give all my unfinished bows a good bit of shooting in before committing to final touches. There is nothing more upsetting than going through the whole finishing process only to identify an issue with the tiller once the bow is properly shot in.

I always put at least a couple of hundred arrows through a bow before I consider finishing a bow. Even the most perfect of tillers witnessed on the tillering tree can change dramatically after a few hundred arrows, so I always expect to see some change and need for adjustment before I embark on sanding and sealing a bow. The last thing any bowyer wants to have to do is make tiller adjustments to a bow which has already been finished.

This bow had moved a little during the shooting in phase and the tiller had droped from 3/16th” positive down to about 1/8” positive. I personally think that a bow with these dimentions and draw weight would better suit a 3/16th – ¼” tiller if it’s likely to be shot with split fingers. So I let the top limb off a tad bit more to regain that nice 3/16th” positive tiller. This resulted in the weight being reduced slightly which when combined with the sanding and shooting in was now registering as 52lb at 28”. This was pretty much what I wanted so I was happy with the final weight.

To finish her up I set about fitting her with a nice pair of wild English Red Deer antler tip overlays. The tips where shaped up nice and fine transitioning from flat to triangular. Antler was used as a an arrow pass inlay too. I wrapped the handle with a piece of my own traditional bark tanned deer hide and finished the whole bow with tung oil which really darkened the colour change brought about by the ammonia fuming. Wow! For a bow string I made a 12 stand Flemish twist from B55 which was fitted with beaver fur string silencers.

Now that the tips had been reduced in mass and the bow was completely finished I wanted to shoot her again to get a real feel for any hand shock. I also wanted to hear what she now sounded like with silences fitted to the string. And what a difference tip mass removal makes to the feel of a bow upon release! The little bit of hand shock which I’d earlier felt when shooting her in was gone. And the release was now whisper quiet too. I experience this change all the time and put it down to two things in the main.

First and foremost I believe that most hand shock and vibration in general is due to poorly timed limbs. This is why I favour a 3/16th – ¼” positive tiller on all of the bows which I make which are intended for split fingered shooting. 1/8” just isn’t quite enough to remain permanent in my opinion and can soon get pulled out to neutral, or worse still, negative! Shoot a negatively tillered bow split fingers and feel the vibration and hand shock and you’ll soon know what I’m talking about.

The mass of the tips is the next most important consideration to make when designing a bow to have minimal vibration/hand shock. By minimising the mass above the knocking points especially, as well as throughout the last 6” of the limbs tips, vibration upon release will be reduced significantly. Shout out to many of the incredibly talented bowyer at Primitive Archer forum for emphasising these points to me many years ago.

So to sum this bow up, she ended up being a smooth, quiet, hard shooting bow with no noticeable hand shock and minimal stack. Immediately after unstringing she holds about ½” of deflex which goes back to neutral after resting. She’s nice and light in the hand but packs a nice punch. She would make for a lovely hunting bow (if only!)

Anyway, I hope you enjoyed the story of her build and like the look of her. This bow is now listed for sale in my Etsy shop and is available for purchase here: Primitive Character Hawthorn Selfbow 5228 – Etsy UK

Mass: 732 grams

Length NTN: 65”

Width: 2 1/4” at widest

Tips: 6” semi static 3/8” wide at tips

Back: Marginally crowned with undulations. Face profile pyramidal.

Belly Profile: Working limb sections undulating to mirror back, transitioning at the tips to D shaped then triangular cross sections.

Tiller: Elliptical 1/8” positive.

Brace Height 6″

Draw Weight: 52lbs at 28”

Snake Skin Rawhide Backed Yew Character Longbow 48#@28″ (Bow No. 12)

A mate of mine gave me this stave ages ago and said ” I bet you cant make a bow out of that!” To be honest, on first inspections I agreed with him!! But on closer examination, in principle, this 4-5″ diameter yew branch had plenty of potential. For a start, the best face (which had been the top of the branch as it grew of the tree) was fairly clean of knots, bar a few wispy bits of epicormic growth. With this face showing promise I inspected the cut ends of this 74″ branch. The sapwood/heartwood ratio looked good with about 8mm of sapwood showing. The heartwood was a beautiful dark orange and densely ringed. The pith was clearly biased towards the face I could use, which was to be expected given that the top of a branch typically has the thinner growth rings, and this was certainly the case with this particular branch.

The thinner end of the branch had a big drying split extending several inches into the usable part of the branch so it was obvious that this section would end up as an offcut. That would leave me with around 65″ of decent stave to work with. The branch was certainly undulating along it’s entire length and very slightly reflexed along what would be both limb sections, however the section which would make for the handle had a significant roll in it due to a massive knot on the belly side. This knot was going to require some thought to deal with. The large roll that this knot had produced was also presenting some deflex in what would be one of the handle fade areas, but only on one side. This would need to be either excepted as character and incorporated into the bow design, or possibly heated out to some extent.

This knot was presenting another problem too as it was causing a significant side bend which would throw the string alignment out of centre by a good couple of inches. The likely hood of this misalignment being removed completely was low since I could see that this large knotted section would only bend through substantial steam heating. To over cook an already cracked knot like this would invariable result in a massive crack right in the lower fade/handle so I was forced to except that the best I could hope for in relation to fixing the string mis-alignment was to end up with a bow with the string slightly favouring the side which it naturally wanted to. This was a shame as I’d sooner the branch was bent the opposite way as the limb which would have to be the lower limb was nice and snakey, and therefore the limb which was carrying the most character. I’d much sooner that this limb had made the top limb since it’s always better to have the most characterful limb as the top limb, or at least in my opinion!

Despite the branch being 4″ wide at the thin end (closer to 5″ at the fat end) the face which was usable was quite crowned. In my mind a bow made from a branch like this one would benefit from having hollowed out limbs. Digging the limbs out would also ensure that all of the pith was removed since the pith was running close to the back of the stave in the thinner end.

So after getting the bark of so i could see exactly what i had to work with, I cut the branch back to 65″. I then began reducing the belly material with the axe. Once an approximate limb orientation and thickness had been established I set about working down the edges to create and approximate face profile. The branch was starting to look something like a roughed out bow now so I set about working out exactly where the handle and fades would sit. My idea was to turn this stick into a 50lb ish, asymmetrical, pyramidal longbow with a four inch handle and 3-4″ fades. I also liked the idea of flicking the tips very slightly, and on a yew HLD this long, the tips could easily be static.

I decided to go for a contoured handle with a shelf. The large knot was going to be located in the bottom of the handle where the fade transition was going to be. This unfortunately put the large roll which was previously mentioned right in the bottom fade too. due to the shape of this roll, it was becoming apparent that I was going to have to except a thicker bottom fade. Had I tried to keep the fade thickness the same for both the top and the bottom, I’d have ended up with a handle which would have been shaped in a way which was uncomfortable to hold. So I decided to accept the thicker lower fade and use it as an opportunity to act as a canvas for the rather beautiful, albeit inconvinient knot.

With everything now roughed out I got the handle over a pan of boiling water and set the timer for 45 mins. Whilst she was steaming away, I said a quiet prayer the the bow gods and asked that they would see that the knot did not split through the handle and fade. My prayers where obviously heard as the thin seasoning check which was there already did not get any worse. So with the handle and fade nice and hot I put the stave into my bending jig and gently eased the string alignment back to centre. After cooling for several hours the clamps came off and further inspection confirmed that the string alignment was now just a tad off centre and favouring the correct side for a righty. Hopefully it would stick!

Next I flicked the tips with the heat gun whilst the limb thickness was still excessive. At least that way, if one of the small pin knots popped during bending I might have some extra material I could remove to take out the cracked pin. I didn’t go mad with the recurve jig so the tips survived the modest amount of flick. At this point I was thinking back to a post I’d seen on PA years ago where a seasoned bowyer had used antler main beam to reinforce and make static recurves on a beautiful osage primitive. I’d put aside a few bits of Red Deer main beam with the intention of trying this strategy for my self some time. So I decided that now was the time to give antler reinforced static tips a go!

After matching the antler pieces to the shape of the recurved tips, I glued and clamped them in situ with TBIII. This would now mean that the tips were set in place so if the tips needed alignment work later on then I would have to apply heat and bend from within the working section of the limbs, fades or the handle. Since the tips actually lined up reasonably well already, I didn’t envisage having to do much tweaking except maybe for some very minor twist. This small amount of twist came out quite easily with some dry heat later on.

Now the tips were set up I proceeded to hollow out both limbs. First with the gouge and then the goose neck scraper I mirrored the various undulations found on the back and projected those same contours onto the belly in reverse. Where there was a hump on the back, the belly would get dug out deep. Where there was a flatter spot on the back, I would shallow out the digging. By aiming for any even 14mm thickness at every spot between the handle fades and the fades of the static tips, it was pretty easy to get a good floor tiller.

Temporary nocks were cut into the tips which, at this point, were still oversized in terms of width. Then onto the tillering tree she went for some first pulls with the long string. The bottom limb looked very stiff so that was dealt with first. Next the inner third of the top limb was let off a touch until the elliptical tiller I was gunning for was achieved. With both limbs bending evenly, albeit with a slightly stronger bottom limb, I got her braced. At this point she was still very heavy so after working down to 50lbs at 22″ I decided to stop and get a rawhide backing on her.

After hide gluing on a couple of nice, thin, strong, home produced red deer rawhide strips, I considered decorating the rawhide with artwork, or maybe a stain. But then I remembered that I had a really beautiful full length cobra rawhide begging to be used somewhere in the workshop. On the cobra skin went along with a pair of red deer antler tip overlays and some deer back strap sinew to secure the antler static tip reinforcements. This sinew wrapping would also double as a means to cover the transition between the end of the cobra skins and the underlying rawhide.

After a week of drying she went back on the tillering tree for the last part of the journey. She was in need of a bit of rebalancing since the backings had moved the tiller a bit but in pretty short time she was back to an nice elliptical 1/8″ positive, pulling around 48# at 26″. I took her our stump shooting for a week to shoot in the last couple of inches as I always do. Final assessment (post shooting in) was that the tips needed just a fraction of twisting in opposite directions to get some better string alignment. Other than that she was holding the positive tiller and after a couple of hundred arrows had settled into 48lb at 28″.

Final touches where a nice thick piece of red stag neck rawhide for a handle covering, and a touch of black stain on the section of exposed rawhide visible at the tip sections. This stain was then wire wool scrubbed to create an aged look. I deliberately left the tips unbacked with the cobra skin as in my experience, snake skin will often end up getting very worn and tatty towards the tip of the upper limb due to the constant rubbing brought about by stringing the bow.

I painted the edges of the snake skin with a thin black boarder line overlayed with white dots to make the contrast between the tan snake skin and the yew sapwood really pop. And the whole bow including the rawhide handle was finished with 6 coats of tung oil applied over a couple of weeks to let it really soak in. I find that this type of satin oil finish really draws out the grain of yew heartwood really well.

I really like how this bow came out even though she is a big heavy girl. I think she’s a real looker with lots of character. And she can sling an arrow too! The obvious advantage of having a bow like this one with string alignment which clearly favours the left side, is that arrow fussiness is not an issue. I shot 40#, 50# and even 60# arrows through this bow and they were all achieving acceptable arrow flight. I was a bit concerned that the weight of the antler reinforcements in the static tips would create a bit of hand shock but by keeping the mass down to a minimum, hand shock is not an issue.

As much as I love the look and performance of this bow, I’ve not got the space for her and would love to see her end up getting shot with the degree of regularity which she desires, so this bow will be made available to buy through my shop. If you would like to become her proud owner then please visit my Esty shop here: Snake Skin Rawhide Backed Primitive Yew Longbow 4828 – Etsy UK

Here are the stats:

Mass: 858 grams with string

Length NTN: 64”

Width: 1 7/8” at widest

Tips: 8” static 7/16” wide

Back: Marginally crowned with undulations. Face profile pyramidal.

Belly Profile: Working limb sections concaved to mirror back, transitioning at the tips to D shapes cross section.

Tiller: Elliptical 1/8” positive.

Draw Weight: 48lbs at 28”

Elm HLD Heat Treated Rawhide Backed Longbow 58#@28″ (Bow No. 11)

This bow came from a nice clean, straight, undamaged English Elm stave which I cut back in the winter. I roughed it out green and clamped it to a slightly reflexed form to force dry it over the wood burner for a week. I then took the roughed out stave off the form and left it hanging up in the ceiling above the wood burner for a month to dry to the point of no further weight loss.

Once the stave was good and dry I chose a shape and profile (HLD pyramidal longbow with static tips) which suited the length and width of the stave (6ft X 3”). I then cleaned it up close to final dimensions and then floor tillered it. The shape looked good so I continued to tiller to brace then carried on down to 22”. I was gunning for a nice positive elliptical tiller and a final draw weight in the upper 50s as this bow was for someone who wanted a nice clean, simple, hunting weight primitive longbow.

All looked good except for a little bit of propeller twist which was making its presence known, so I opted to straighten that out whilst heat treating the slightly dug out belly. So after fixing the stave to the form again and using clamps to pull out the propeller twist I set to cooking the belly.

Half an hour with the blow torch got the belly nice and dark but without any cracks. I’ve learned over the years that properly dried whitewood staves wont check as easily when heat treated as those which are still holding 10% or more moisture. This stave was down to about 6% moisture content so I could get away with using the heavy heat application which comes with using a blow torch to heat treat the belly of a bow. Give it a try and you’ll see what I mean.

After a day to cool and reacclimatise, I checked the tiller again. The heat treating had banged on some weight and gotten rid of the propeller twist nicely. The stave was now holding about an inch and a half of reflex too. After tillering down to 26” I was getting 63ish lbs so I decided to shoot in the last 2 inches and see if the positive tiller would stick.

A few days slinging stump heads in the woods gave me chance to really shoot her in. All looked good however the tiller was now looking a bit too neutral and since this bow is symmetrical and the guy this bow is going to shoots split fingers, I opted to take some more wood off the top limb to regain that positive tiller.

With everything looking nice, I set about rawhide backing this bow to add some extra durability. As much as I love self bows, the simple reality is that one ding in the wrong place, (especially on the back and sides, or worse still back corners) and a bow could easily be compromised. I like the protection that properly made and fitted deer rawhide gives to the back of a stave bow.

I back many of the bows which are going to end up in the hands of other people as I know how rough others can be with bows.  On this particular bow I opted to use some really nice thin wild red deer rawhide which I produce from deer that I’ve hunted over the winter. I process this rawhide the traditional way which ensures that it remains good and thin but incredibly strong. I sell this rawhide for a very reasonable price in my ETSY shop: Southmoorbows – Etsy UK. You can buy it here: One Matching Pair of Wild Deer Rawhide Strips – Etsy UK

After a couple of days for the titebond III  and rawhide to dry thoroughly, I set about trimming the rawhide and fitting some really nice Red Deer antler tip overlay (which you can buy here: Wild English Red Deer Antler Whole Coronets 3.5 Long – Etsy UK)

After sanding the whole bow down and polishing her up with wire wool, I stained the wood with an alcohol based black wood stain. The rawhide got treated to a coat of leather dye which once dry was wire wool scrubbed in the mid limb section to give it an aged and worn appearance.

 All the final scrapping and sanding to finish brought the weigh down to 59lbs at 28”. A further few shooting in sessions saw the weight settle in to 58lb at 28”. This was about perfect.

On went a piece of my own home produced, lovely, thick wild red deer neck rawhide for a handle covering (which you can buy here: 5 X 6 Wild Red Deer Rawhide Piece 0.4 1mm Thick – Etsy UK). This rawhide handle covering got a coat of leather stain too. The handle and the bow itself were then both treated to half a dozen coats of tung oil over the next couple of weeks to seal her up good and tight.

Whilst this bow is a bit on the heavy side for me personally, the guy who received this bow loved it. It is indeed a punchy bow with no noticeable hand shock, and very quiet too. It would make a really great hunting bow.

Here are the stats and pics. Hope you like!

Mass: 678 grams

Length NTN: 67”

Width: 1 7/8” at widest

Tips: 5” static 3/8” wide

Back: Marginally crowned with minimal undulation. Face profile pyramidal.

Belly Profile: Working limb sections concaved to mirror back, transitioning at the tips to triangular cross section.

Tiller: Elliptical 1/8” positive.

Draw Weight: 58lbs at 28”

Sinew and Snake Skin Backed Yew Recurve 50# @ 28″

After a break spanning a few years, I’ve been experimenting with snake skins again recently. I love snake skins as a backing material as, in my opinion, they look amazing and are fairly simple to apply if you know what you’re doing. Admittedly my first couple of attempts to apply snake skins to a bow where less than perfect. But I’ve got a system in place now which is simple and effective and seems to work very well for me. At some point in the future I’ll do an article on my own quick and simple way of applying snakes skins.

The only trouble I find with snake skins is trying to source them here in the UK. I once paid an absolute arm and a leg to import a pair of Western Diamondback skins from the USA. As beautiful as those skins were, I simply can’t justify the cost of getting skins from traditional species of North American snakes into the UK these days. So I’ve started to use skins from Asiatic snake species instead.

The skins shown in the pics below are imported from Asia and are from a very common species of snake loosely referred to as the Asian King Ratsnake – Elaphe carinata. In terms of their conservation status these snakes are currently ranked (LC-least Concern) by the IUCN- See here: Elaphe carinata – Wikipedia. Whilst there is no doubt that these skins are not as pretty as skins from something like a North American rattle snake or even a Boa, I still think they look pretty amazing! And these Asian skins cost a mere fraction of the price of a pair of rattler or Boa skins!!

The bow featured in this post is one of my older sinew backed Yew recurves. A friend of mine asked me a while back if I had a hunting weight primitive bow which a mate of his could buy from me to hunt deer with. (Not here I hasten to add!!) This particular bow was one of my favourite stumping bows. It’s compact enough to be woven through the scrub and it certainly packs plenty enough punch to deliver appropriately weighted arrows for a lethal shot on a deer sized target.

Since this particular bow has seen many hundreds, if not thousands of arrows through it I can reliably say with certainty that this bow will withstand a lot of use and abuse, so I offered this bow to the avid hunter after re finishing it for the guy with the addition of a snake skin backing to provide an aesthetic upgrade, as well as a modest camo effect.

I also replaced the fairly battered old leather handle with my new favourite cover material – home processed and prepared deer rawhide. What an amazing handle cover material deer rawhide is! Not only does it look great after staining (note the marbled like effect from using a dark leather stain wiped off with pure isopropyl alcohol), but it’s also an incredibly hard wearing material. Deer rawhide must be sealed though else it will absorb water, but that’s no problem as raw hide will also take an oil finish like Truoil or Tung oil really well so you can oil finish/waterproof the handle at the same time as you oil finish/waterproof the bow wood.

Here are a few photos of the re-finished bow. Hope you like!:

Yew HLD Recurve Character Branch Bow. 48# @ 27″ (Bow No. 7)

This bow started out life as a 2-3” branch which I harvested a couple of years ago. Given all the knots, kinks and wiggles, I knew it was going to be a challenge to turn this ugly little stick into a bow. Yew is one of those few bow woods which can be incredibly forgiving however, so I decided to give it a go!

The main challenge with this branch was going to be placing a bow back somewhere on it, and in a way which would keep the back from including any of the larger more fragile knots. One particular face was cleaner than the rest, but by choosing to use this face as the bows back, I would have to deal with a significantly deflexed 8” section which would have to fall somewhere between one of the limbs fades and the middle of that limb.

The branch measured only 68” long so I would have little opportunity to manipulate the handle location anywhere other than in the approximate centre. Given all the potential weak points on this branch, I did not dare to aim for a bow any shorter than 66” nock to nock.

I knew that I’d be able to steam out some of the unsightly deflex in what ended up being the top limb, but given all the knotty material in this deflexed section, I dared not try to straighten it out completely as the likely hood of one on the knots popping was very high.

After roughing out the basic limb thickness and face profile, I set about reducing the deflexed section with steam. After that was taken care of the small amount of string misalignment plus a little twist was corrected with some dry heat. At this point I also steamed in the gentle recurves. Now I had a more workable and predictable shape, I could then start to think about the final limb width and general profile/cross section.

The heartwood content of this bow was not great and the sapwood was about 8-10mm thick. The back was covered in small raised pins so chasing a ring was totally out of the question. And since the likely-hood of this branch ending up as firewood was high, there was no way I would consider investing time and effort to sinew back a risky bow like this, just to get away with violating the back in order to improve the ratio of sapwood to heart wood.

As with all branches, the pithy centre was biased towards the side which had the tighter growth rings (1-2mm) which happened to be on the same side of the branch which I’d chosen as the back. This meant that the pith was currently contained within both limbs and ran right through the handle.

Whilst I have no problem with the pith running through the handle section or even the thicker parts of the fades, I do not like leaving the pith in the working parts of the limbs. Experience has taught me to expect cracking, splitting and even fretting to occur when the pith runs close to the surface of the belly material.

Given that the crown on this branch was significant and the pith was currently buried inside the roughed out limbs I opted to hollow out both limbs to match the crown, whilst hopefully getting deep enough to remove the pith at the same time.

This worked fine but left me with very little heart wood. In fact the sapwood to heartwood ration was around 70/30%. Not ideal so I decided to take the sides in as the sides were entirely sapwood. This reduced the limb width down from about 1” 7/8ths to around 1” 5/8ths.

Now that the pith was out of the limbs and the heartwood sapwood ration had been improved, I didn’t have a great deal of bow left to play with, so I had to be realistic with the outlook. I guessed she would probably make for a finished bow around 35 40lbs at best. So I was really suprised when I actually managed 51lb at 27”!

I tillered the bow to 27” as my brother will likely get this bow. His draw length on a good day is about 27”. I took the tillered (albeit unsealed) bow stump shooting for a couple of weeks with only tillering nocks cut in and a leather strip wrapped around the handle to double as a grip and arrow pass. After a hundred plus arrows I checked her over for faults but found none.

I was expecting some of the steam correction to pull out in the deflex section but it didn’t. The finished bow looks like it has a very positive tiller but it is deceptive. The deflex section right out of the top fade is what gives this bow the look of excessive positive tiller.

In reality, this bow feels very well balance through the entire draw cycle and the limbs time together great when I shoot it with split fingers. I’ve shot enough bows over the year to be able to feel when a limb is weaker than the other. Despite the appearance, this bow is very well balanced.

After double checking the bows tiller by feel and then by tiller tree, I confirmed that the top limb is only slightly weaker than the bottom limb which is perfect for both my use, and my brothers use, since we both shoot split fingers.

It never ceases to amaze me how you can take a bow which looks to be tillered very well, only to draw it back and feel that torque on the wrist that you get when one limb is significantly stronger than the other. Nowadays, when it comes to final tiller, I place more emphasis on feel than I do on appearances. Where wooden bows are concerned (especially character bow) appearances are incredibly deceiving!

After shooting and sanding, I weighed her again and she was settled in at 48lbs at 27”. Happy with that I fitted her static recurved tips with a pair of Red Deer antler tip overlays, and I inlayed the arrow pass with a patch of buffalo horn. For the handle I chose a simple leather grip fitted after sealing the finished bow with 8 coats of Tru-Oil.

This bow put a smile on my face. I could well have imagined this bow breaking mid tiller. Not only was I impressed that she held together, but she actually ended up a being a proper little looker too. So much character and more than satisfactory performance has made this little bow one of my favourite character bows so far this year. (I have others to show off soon!)

In terms of performance, with a 12 strand B50 string on she sent a bunch of 450 grain arrows over the chronograph at an average speed of 143ft/sec. Not bad for a knarly old branch bow! Mass is 560 grams and she carries about ¾” of set immediately after unstringing which returns back to almost straight after resting.

Here she is. Enjoy!

Top nock
Top nock
Top nock
Top nock
Top nock
Bottom nock

Bottom nock
Bottom nock
Drawn to 26″
Drawn to 26″
About 3/4″ of set immediately after unstringing. Returns to almost straight after resting.

Thanks for looking!

Sinew Backed Yew Recurve Flatbow 55# @ 28″ Bow No.6

This is one of the many “lockdown bows” which I made through 2020/21. Having been furloughed for a couple of months I took the opportunity to tinker with a pile of difficult staves which I’d had kicking about for years. A good time to try and sort the potential staves from the firewood!

This bow came from one such stave. It was nothing more than a branch to be honest but was still one of the better potential staves in terms of its overall shape. That said, It was still flawed to some extent with masses of pin knots on what would be the back side of the stave. It also had quite a lot of deflex across the entire length of the back. Especially in what would be the bottom limb.

Despite the imperfections I committed to making a bow from this stave and had long since promised to build a mate of mine a yew recurve. So I made it my mission to honour my promise using this far from optimal Yew branch. The basic plan was to build a 66″ nock to nock” 50-55lb recurve flatbow.

The stave had nice tight growth rings of between 1-2mm thickness but unfortunately carried little heartwood. The sapwood on what would be the back was too thick at around 12mm thick, but due to all the tiny raised pin knots, it would be impossible to properly chase a ring down to a better sapwood thickness without violating the back around all the tiny raised knots.

A trick which I have used many times before in this situation is simply to accept the violation of rings on the back but mitigate against limb failure by sinew backing. So that’s what I decided to do with this bow.

The stave was only 3″ wide so the crown was moderate. Rather than try and reduce the sapwood thickness in a rounded fashion as would be necessary to mimic the natural crown, I decided to just flatten the whole back with a rasp. In doing this I was able to work down to approximately one sapwood growth ring right down the centre line of the bows back and follow that from one end to the other maintaining a totally flat back profile.

Now that I had nearly 50% of the limb represented by heart wood, I roughed out the general limb thicknesses and finalised the face profile. In order to counter the significant deflex I recurved the tips with steam and performed a small amount of dry heat correction to line up the tips and correct some small string alignment issues. Then it was on with 3oz of deer leg sinew, glued on with my own home made sinew glue.

After the backing was completed I wrapped the whole thing up for a few days in cloth strips to keep the sinew from peeling away from inside the recurves and around the handle.

Once I could see that the sinew was dry I unpeeled the wrapping so I could take a peek. To my disappointment some of the sinew had dried out to form some small fissures. I put this down to one reason. Taking way too long to apply the sinew!

I’d timed the sinew application with the kids getting home which invariably led to a pile of requests, Dad jobs and other frivolous distractions all when I’m trying to slap on my glue soaked sinew bundles. Lesson learnt!!

Anyone who has done any amount of sinew backing will tell you that the best sinew jobs are done quickly and smoothly whilst the glue is still warm and not allowed to set up in between bundle applications. Each fresh bundle of sinew wants to be laid down alongside its neighbour before the neighbouring bundle has started to “Gel”. That’s where I’d gone wrong.

All the distractions had led to me applying bundles as and when I got chance as opposed to in one fast fluid operation. This meant that by the time my next sinew bundle got applied it’s neighbour has gelled up reducing the ability of the fresh sinew bundle sticking to it’s neighbouring bundle.

The result is bundles of sinew separating apart from one another when the bundles start to shrink during the drying process. I should add however that the adhesion between the glue soaked sinew and the bow’s back is not affected by this phenomena.

As disappointing as the end result was, the imperfections that I was seeing in the dried backing were only aesthetic. The functionality of the bow’s backing was completely unaffected.

So onwards we went. After the cloth wrappings had been removed and re-tightened several times over the initial drying period (a week), the wrappings came off and the stave was set aside for nearly a year to cure thoroughly.

I’d kept the limbs asymmetric to try and mitigate for the lower limb deflex which was now substantially less than it was. This was due to the sinew backing pulling the stave back about 1 & 1/2″. Now the deflex was only about 3/4″ in total which was a massive improvement as before backing the natural deflex was about 2 “. After coming out of hibernation, deer antler tip overlays were fitted over the top of the sinew and the tillering began.

In order to preserve as much heart wood on the belly as possible I opted to create a slightly rounded albeit mainly flat belly. An arrow shelf was added in the form of a scrap piece of deer antler.

The bow was quick and easy to tiller and looked nice pulled down to 28″. At this point the weight was 58lb which was about right for the guy who would be getting this bow.

Before finishing the bow I shot stumps with it for a couple of weeks then re adjusted the tiller slightly to weaken the top limb just a tad bit more then called her done at 55lb at 28″ with a neutral tiller. (The owner of this bow shoots three under.) To finish I coated the sinew with a good covering of Titebond III so seal and smooth out the sinew. After sanding it was on with 8 coats of Truoil to finish.

The handle was covered with a piece of scrap leather and the same leather in reverse was used to protect the arrow pass.

I really like this bow. It’s a bit heavy in the hand (630Grams) due to the extra weight from the sinew but isn’t really noticeable once you get in the swing of shooting her. The limbs are an even tapper from 1″ 3/8ths at the fades down to 1/2″ at the tips.

This bow made for a snappy shooter which I really enjoyed shooting. I shot her over the chrono to see if she was quicker than usual and, whilst hardly getting blown away by the speed, I was quite happy with the 162ft/sec average that I got with a 500 grain arrow. That’s not bad for a stick and string bow!

Anyway, I hope you like the pics!

Bow No.4 – Sinew Backed Character Yew Flatbow 50lb at 28″

I built this bow about this time last year after coming across a knarley 2 1/2″ thick yew branch which had been kicking around in my yew stash for a few years. It was one of those branch wood staves which no conventional bowyer would have used for anything other than firewood. And I must admit, I nearly added it to my own firewood stack!

The branch was relatively straight across the cleanest face but had several bumps, knots and wiggles distributed between 8 sections of reflex and 7 sections of opposing deflex. The sap wood to heartwood ratio was about 2-1 with sapwood clearly forming the majority of the branches volume.

I decided to give it a chop about with the axe to see what the belly would look like with most of the waste wood chopped away. To be honest, it looked like it might just about make a bow.

My main concern was that the pith centre looked like it might not come out without reducing the thickness to a point where the bow would end up very light. But after long string tillering it looked like the limb thickness would be clear of the pith whilst leaving behind enough wood to make a light to moderate weight bow. But the pith would run through the handle along with a drying check which looked unsightly.

My original plan was to produce a stiff handled flat bow with a high crowned D section cross section. But I just couldn’t put up with leaving that horrible crack running right along the length of the handle and fades. So I decided to gouge all that split wood out from the handle and the fades leaving me with just enough wood to function as a handle albeit a bendy character handle!

I made the limbs symmetrical and a max width of 1″ 5/8ths. Tiller was 1/4″ positive. Fades about 2″. Antler tip overlays were fitted after sinew backing so that the overlays could sit on top of the sinew. Nock to nock the finished bow measures 64″.

The single layer of deer leg sinew backing was a hedge against the knots but in hind sight was completely unnecessary. That said the sinew has kept the set to absolute zero. In fact before I sinew backed the bow I tillered it as a self bow to 28″ and was content with the 44lbs draw weight and the 1″ of permanent set after shooting in over a hundred arrows.

But I had a small pile of sinew to do something with so decided to stick it on the back of this bow to see what effect it would have on such an undulating and knarly high crowned back. The results were better than expected!

After sticking 2oz of sinew on with sinew glue the bow was wrapped up and shelved until Nov 2022 so it had about 10 months of curing time. During this time the bow had straightened out and the permanent set had disappeared and didn’t reappear even after retillering and significant shooting in. The weight had jumped up too so I ended up with 50lbs at 28″ with no set at all.

With no skins to cover up the sinew I decided to just leave it bare. I gave the whole back a coat of Titebond III to help smooth down the rough sinew before finishing the whole bow with Trueoil. I refrained from wrapping the handle so that the gouged out handle could feature as part of the overall character of the bow.

An attractive knot is in just the right spot to function as an arrow pass so I didn’t bother with an inlay. The final look is certainly rustic but to be honest, I quite like it!

The handle contours naturally in such a way that the crook acts as a locator dish which feels quite comfortable in the hand, even with the handle bending upon drawing. That said, unless I hold this bow lightly I do notice a bit of hand shock. I think that this is down to the mass of the tips which is probably not helped by the presence of the sinew. In fact, this bow is a little bit on the heavy side thanks to the backing. The total weight of this bow is 760grams! Yikes!

I actually like shooting this bow and it gets quite a bit of attention from others who often see it and comment with questions like “What the heck is that!?” Once they’ve shot it though they usually ask if I can make one for them!

Anyway, here are the pics. Hope you like!

1/4″ positive circular tiller
This larger knot acts as a natural arrow pass.
Top nock
Bottom nock
Top nock
Bottom nock
Drawn to 26″
Immediately after unstringing.

Bow No. 3 – Elm Deflex Reflex Selfbow Flatbow 48#@26”

I built this bow from a totally green 4” diameter English Elm log which came my way back in the spring of 2022. The bark slipped off perfectly which was good in that it was easy to remove, but meant that the bow finished out lacking the wonderful cambium camo effect which I absolutely love to see on white wood selfbows.

As with most Elm logs above 3” in diameter, this log had some beetle damage which resulted in this log only producing one stave in the end. This was a shame as the log was clean, straight and carrying little twist. If it wasn’t for the beetle damage then I’d have got two nice staves from this log.

The damage free stave was slightly reflexed in the handle area but had a nice straight face profile with tips almost in alignment with the handle centre. After recurving I chose the top limb so that the string would favour the left side of the riser section since I’m a righty. I laid out the staves with symmetrical limbs and a handle section which would accommodate a 4” grip with 3” fades.

Both limb sections had a tiny amount of deflex mid limb so I could see the potential for a deflex reflex riser/limb profile. Since the stave was 66”, long I laid out the bow to finish 64” nock to nock. This is ample length to safely accommodate light recurves on a nice and wide limbed Elm flatbow.

 I planned to finish with a solid and safe selfbow around 50lb at 26”. Flicking the tips on a bow this length shouldn’t stress the limbs, but as a back up against chrysling the belly, I kept the limbs around 1” 7/8ths wide for the first 2 thirds tapering rapidly down to ½” wide static flicked tips in the final thirds of the limb.

This staves back had some crowning to it but not really enough to warrant hollowing out the belly although in hind sight I probably should have. That said the flat belly/low crown cross section profile appears to have retained adequate compression strength and has withstood any fretting, even after much shooting with a held anchor. The deflex/reflex profile probably helped here too and certainly made the tillering process easy. The draw of this bow is also very smooth with very little stack.

This stave was simple and quick to tiller given the very even natural profile and in no time I was left with a snappy, low volume, low mass flatbow (570 grams) which is very pointable and is an absolute pleasure to shoot. Brace height is 5 1/2” and the tiller is 1/8” positive. This is one of those bows which when braced plays a note with one of those wonderful high frequency resonances when the string is plucked. Dinnnnnnnnnng!

I could have produced a heavier draw weight from this stave but I like bows around the 50lb mark at my draw length of 26” so I aimed for that and got it. There is no hand shock since the tips are low in mass and the grip is very comfortable to hold with a loose grip. The bow shoots hard at 26” and shooting a 9gn/lb arrow (450gn) over the chronograph produced average speeds around 156ft/sec.

The stave was fairly plain with no wiggle to speak of. Nor were there many significant quirks like knots etc so I decided to stain the bow so as to draw out the main feature which was the beautiful grain on the belly. A contoured grip and arrow shelf made a bit more of a feature out of the handle section and antler tip overlays helped to pimp up the limb tips a bit.

The arrow rest is not cut to centre but the paradox isn’t a problem anyway. An arrow in the 45-50lb spine range shoots well in this bow.

The handle received a light tan leather covering which was also used in reverse to serve the arrow pass. The stain is an oil based Dark Oak colour finished with many coats of truoil.

Here are the Pics. Enjoy!:

Drawn to 26″
Immediately after Unstringing.

Bow No.1 – Character Field Maple Deflex Reflex Selfbow 50# @26″

This little project was initially just intended to explore how much twist and malformation could be corrected through drying a badly mishappen green field ma[le stave whilst clamped to a form. The stave came out so well that I decided to persevere with it and the project ended up turning into a full bow build. The end result is a nice sweet shooting deflex reflex selfbow. The full build can be seen here: https://southmoorbows.com/build-along-field-maple-deflex-reflex-character-longbow/

As is typical of Field Maple, this stave lacked much in the way of colour or grain so I decided to stain it. Antler tip overlays and a simple black leather handle/arrow pass compliment the natural character of the bow. The limb cross section ranges from crowned/convexed to almost rectangular with some mild valleys, troughs and hills around the few small knots and naturally wavy grain.

Measurements are as follows:

Length Nock to nock: 66″

Limb width at widest point – Top: 2 1/8″ Bottom:2 1/8″

Mass: 655 grams

Draw Weight: 50lb at 26”

Arrow speed at 9gn/lb = (450gn arrow) = 158ft/sec

Brace Height: 6”

Tiller: 1/8” positive

Build Along Field Maple Deflex Reflex character Longbow.

This project started out as a simple short term experiment. I’d had my eye on a clean but crooked and twisted Field Maple limb for quite a while. Trying to envisage where within the limb I could salvage a stave from was difficult. The limb was about 4.5” thick and had a section about 80” long which was relatively clean. In general the limb was sound and free from large knots, pins and other major imperfections.

The 80” section that showed most potential for making a bow stave did have other issues to consider however. This most usable section was badly twisted and had a significant sideways bend in one half of the stave. There was also a very large amount of natural reflex in what would be the middle/handle section.

To start with, I just wondered if it would be possible to improve the shape, twist and alignment of such a misshapen stave whilst it was still green. I’ve performed many shape corrections on green staves before, using forms and clamps, but I’d never before tried to correct asymmetries in a stave which were as server as this without using fully seasoned staves manipulated with steam bending.

I’ve worked with clean Field Maple on many occasions before so understand the potential this wood has for making a very good white wood bow. In the past I’ve used dry heat to correct minor twist and alignment issues on fully seasoned Field Maple staves. I’ve also used steam heat bending on Field Maple staves for more significant bending such as recurving tips or bending handles for alignment issues etc.

The amount of twist and reflex in this Field Maple stave however was way more than I’ve dealt with before. My expectations for this stave were not great. I envisaged the stave resisting the significant forces necessary to bend and twist this green stave into a better shape.

I also expected cracking or delamination to occur in the mid section due to the shear amount of force than would be necessary to pull the twist out using clamps and a drying form. But my expectations were proven wrong!

The green Field Maple stave roughed out and clamped to a reflexed form to try and produce a more workable shape. Note how the tips have been left full width for extra sideways leverage from the clamps. this really helps to pull twist out.
Side view of the green stave being force dried in the mid day sun on an especially hot late summer day. Note the remaining reflex in the handle section.

The reflex in the handle section was going to remain no matter what I did but this was fine as I could imagine this stave potentially turning into a reflex/deflex longbow. By leaving the limbs full width out to the tips I was able to get significant leverage from the clamps positioned on the edges of limbs. This leverage enabled me to crush down on the side of the limb that was pulling away from the form due to the limb twist. This worked really well and the twist between the fades and the limb tips came out beautifully. 

The overall shape was made much more even by using the reflexed form too. By forcing the tips to line up with the handle centre I was also able to correct most of the significant string misalignment. Throughout the end of August I left the clamped stave outside in the sun on hot days.

The stave came indoors for a week once the temps dropped and was left on one of my window sills which catches all of the mid day sun. This window sill is like a green house and serves to quickly force dry staves very well. After the stave had been allowed to dry on the form for about a month I removed the clamps to inspect the results.

Plenty of character left but a much more workable shape overall
side view immediately after removing the clamps and form.

The overall twist was reduced from nearly 70 degrees to about 5 degrees. The massive reflex was tamed to something much more manageable and the string alignment was now only a little off to one side. The stave now actually looked perfectly workable with plenty of character remaining, so instead of calling the project done I decided to see what I could do to turn this stave into an actual finished bow.

My next job was to get this stave down to some realistic dimensions. It would be unlikely that this stave was totally dry so by getting close to final dimensions I’d soon get this stave fully dried and ready for tillering.

Marking out the limb tips. I’d decided to plan for fine antler tip overlays on this bow so initially I laid the rough tip design out to 20mm tapering out to full width at mid limb.
Marking out the rough outer limb shape using my steel ruler to follow the natural curves of this stave. The final shape however will be dictated by the grain itself rather than by lines.
Working down to my lines with the draw knife. Field Maple is a wonderful wood to use cutting tools on.
The approximate shape of the bottom limb. I decided to go for a classic willow leaf shape and carry the tapper from mid limb out to the tips. This stave was initially roughed out to 2 ¼” wide which is what the stave measures in this picture. I may reduce this width to 2” before tillering though.
Top limb roughed out to the same approximate dimensions as the bottom limb. The top limb will be the straighter of the two limbs.
The string alignment appears to be favouring the left side of this picture which suits the decision to make the nearest limb the top limb. This will result in the arrow favouring the left hand side of the bow which suits me as a right handed archer.
Now to reduce the limb thickness to something more like ready for tillering.

Field Maple is a dense wood so these 14+mm thick limbs will need quite a bit of reducing in order to get them to a point where the tillering process can begin. I’m going to aim for 14mm fade end thickness tapering down to 10mm side thickness at the tips. I want the tips to do a very small amount of work on this bow so I will reduce them down to 10 mm but keep away from them when tillering. This should Keep the last 6” of the tips stiffer than the working section of the limb, but without leaving the tips carrying unnecessary mass which would be the consequence of keeping the tips thick enough to ensure that they are completely static.

Working down to my lines with the draw knife.
One edge worked down to the line.
Same on the other side.
Bringing both sides together to make the limb initially flat on the belly.
There are only a couple of knots on this stave which look like they will fall of the bow as more material gets removed.
This limb is now approximately 14mm thick as it leaves the fades tappering down to 10mm thick at the tips.
5 minutes with the Shinto rasp makes sure everything is nice and flat with an even thickness taper. I like the Shinto rasp for this job because it is easy to keep flat. Whilst it’s great for working down flat sections, it won’t get into dips etc very well.
Following the dips and humps on the belly to make sure the edge thickness is even. The half round rasp comes in handy here.
A quick scrap with the card scrapper and the basic limb thickness is ready for finer scrutiny.
A nice bit of wiggle to work with.

When I work the face down to rough dimensions on any bow, I always let the grain dictate the limb shape. This avoids creating grain run out which in my experience is a fast way to limb failure.

Next I needed to get the cambium off the back of the stave.

Until the cambium has been thinned right down I can’t get a true handle on the real thickness of all parts of the limb. I tend to leave quite a lot of cambium on a stave right through to the limb thickness reduction phase as the cambium layer acts as a good layer of protection to the back of the bow. A cushion against scrapes and scratches is a good idea whenever the back of a bow will be seen on the finished bow. Since this bow will not be backed the natural appearance of the first layer of wood below the cambium will be displayed on the finished bow so taking care to protect the back of this stave is important.

The valleys and troughs on the back require the use of a gouge to get down through the cambium to wood.
The curved scrapper is used to expose the first layer of wood.

Personally I like the appearance of self bows which have a little bit of cambium left on the back of the bow. This little bit of cambium adds to the beauty of the finished bow and confirms to the observer that the back of the bow is in actual fact the very wood which once grew directly beneath the bark. No ring chasing necessary. This remaining cambium also creates a beautiful camouflaged effect on the back of the bow.

The curved scrapper can get into most of the valleys and troughs and can be useful for working around raised spots like knots too.

As tempting as it often is to hog at the cambium with a draw knife it is too easy to nick the underlying wood and compromise the back of the bow so I always proceed with caution using a scraper for raised spots in particular.

A small gouge comes in handy at times.

The back of this stave has an undulating topography which presents as hills, valleys and troughs. If I were to leave the belly completely flat in cross section then the hills on the back would act as stiff points and the valleys and troughs would act as weak spots. To counter this potential problem I contour the bellies on my wide limb bows so that the belly topography matches that of the back but in reverse. To achieve this I use a mixture of gouges and curved scrapers to remove material from the belly directly opposite the hilly thicker spots on the back. This enables me to leave material behind over the thinner valley and trough areas of the back. This affords them extra protection and creates a truly even thickness across the entire width of the limb.

Here is an example of where there is a hill on the back creating a thick spot. I’ll counter for this by scraping away material on the belly which is directly opposite the high point on the back.

I use my fingers to feel the thickness across the whole limb. If I find a thick spot I’ll remove material from the belly until the thickness is the same as everywhere else nearby. I’m aiming to end up with limbs which are an even taper of 14mm – 10mm thick along the entire length and width of the bow. This means that areas of the back which present as high crowned will have a corresponding belly section which is effectively hollowed out to counter for the crowned back. This stave has a mixture of high crown plus flatter sections with hills, valleys and troughs so the belly will end up being far from flat.

I use my fingers and thumbs to feel for differences in thickness. Once I’ve found a thick spot then the curved scraper gets called into action.
Constantly checking for even thickness.
Trying to mirror the back on the belly.
Here you can see than I’ve dug out a trough on one side of the limbs belly to replicate what is happening to the surface wood directly opposite on the back of the stave.
Here the limb has a notable crown so the whole width of the belly is hollowed out to compensate.
This limb has a 12” section which has a high crown so the belly here will have a correspondingly hollow profile. Maple is a wonderful wood to work with a scrapper.
Countering the excessive reflex in the handle with some deflex in the limbs.

The next job was to put some deflex into the limbs to counter for the reflex in the handle section. I do this with the flat back of a form and some padded blocks and a clamp to create the right shape. I’m aiming to create most of the deflex around the first third of the limb about 6 – 12” out from the ends of the fades.

Here I’m using a heat gun to gently heat up the belly. I make sure I heat both sides of the clamp to make sure the deflex is evenly distributed throughout the first two thirds of the limb.
After about 10 minutes of heating the belly and the sides I then leave it to cool for an hour.
After both limbs have totally cooled I check both limbs for twist. Both limbs could do with a little bit of a correction so I fit a scrap piece of wood to each limb so that I can lever the limbs into a better position.
Once again the heat gun is used to heat the sections of the limbs which I want to correct

I’m carful where I choose to heat as I want to flick the tips on this stave and realise that if I make an early heat correction to a limb near the tips then the steaming of the tips which takes place later will pull the previous heat correction back out when the heat from the steaming travels down to where the twist correction was made.

Now that the limb twist has been dealt with I steam the tips for half an hour so than I can put a small amount of reflex into them.

I’m a fan of longbows but enjoy the lack of stack which a recurve benefits from. Whilst not wanting to go for a full recurve design on this bow I did like the idea of balancing the deflex and reducing stack a little by flicking the tips on what is aimed at finishing up a longbow.

After half an hour over the pan I fit my steel ruler to the belly of the stave using a small G clamp and a packing block to protect the back from clamping pressure. I frequently do this as it really helps prevent the belly tips from delaminating when being bent over the recurve form. The extra support of the flexible steel ruler simply stops a splinter lifting on the belly which is the kiss of death to many would be bows. This trick is especially important if your stave tip belly is not presenting as one growth ring, which is the case here. On this particular stave, both tips span two growth rings so delamination is a high probability without the ruler acting as a brace.

Into the recurve form she goes. My oven door handles act as the perfect brace to hold the stave in position whilst left to cool for half an hour.
The flat wooden spatula which you can see stuffed into the tip acts as a wedge to hold both the limb tip and the steel ruler in place. The old tea towel just prevents the back of the limb tip getting marked by the form. This is how I do most of my recurves/flicked tips.
Both tips flicked.
After a rest overnight to cool and re aclimatise the stave is now looking quite nice and even from the side profile.
The tips are both kicking out in opposite directions which will call for a little more heat twisting in order to get them lined up.
I’m keeping any further adjustments away from the tips so as not to cause the recurves to fall out. I will give both limbs a bit of a twist with the heat gun then recheck for tip alignment and string alignment overall.
By griping the upper third of the limb in the padded jaws of my vice and fitting the other limb with a wooden paddle I can lever a significant amount of counter twist into the mid limb section.

I have to be careful at this point to make sure that the deflex that has already been put in is not lost. I make sure to protect the deflex by setting up the paddle so that the leverage is the direction that promotes flexion to the limb rather than extension. This trick will ensure that the deflex is preserved.

Now would be a good time to roughly shape the handle.

I thought about including an arrow shelf on this bow and certainly had plenty of wood left with which to do that, but I fancied going old school and figured a simple handle for off the knuckle shooting would complement the natural lines of this stave best.

Working down to my lines with the draw knife first.
Hitting my lines accurately and achieving handle symmetry with the Shinto rasp.
Three inch fades rounded into a classic willow leaf shape.
Rounding the corners on the back. I sometimes like a spokeshave for this job.
Cleaning up the corners and the sides and making sure the face profile is finalised before tillering starts. Next job – tip overlays!

For a detailed description of how I added deer antler tip overlays to this stave see this separate article Here: https://southmoorbows.com/4-secrets-to-making-your-best-antler-bow-tip-overlays/

Bottom nock with string groove cut. Both overlays are left wide for now and will be thinned down quite a bit before the bow is finished. I like quite fine tips on willow leaf shaped limbs.
I’m heat treating both flicked tips here in order to prevent the bend pulling out once tillering begins. I also quite like the dark coloured tips which results from only targeting the last 6” of the limb. The dark colour contrasts nicely with the lighter untreated belly wood.
Now that the overlays are functional I can eyeball the tips and handle for alignment. The string biased towards the left side of the bow appears a little too strong so I decide to heat the handle area for a correction.
The handle is quite thick so I opt for setting the stave over the wood burner top whilst fitted to a bending jig.

The depth of heat penetration that you get with this method is significantly greater than can be achieved with a heat gun. After 45 minutes the handle section is scolding hot so the stave is manipulated into alignments and then comes off the heat and is allowed to cool for an hour. After the jig comes off I check for alignment and am happy to see that the correction has brought string alignment back to just favouring the left side which is perfect for a right handed archer such as me.

Roughly shaping the handle before starting the tillering process.
Deflex reflex staves are always easier to tiller as the even shape has already been achieved through the various heat bending processes.

This stave is heavy but almost braceable right out the gate. After about 15 mins of long string tillering on the tiller tree the bow can be strung at a 6” brace height.

The left limb in the picture above is the bottom limb and is slightly weaker than the right limb which the top limb. I shoot split fingers so want this bow to finish out with an 1/8″ – 1/4 ” positive tiller. This was opposite to what the bow was doing at brace so I needed to reduce to top limb to swing the balance the other way. This is fine though as at this point, the bow is still quite heavy. I’m a short drawer so I’m aiming for 50lbs at 26”. At the minute I’m still getting 50lb at 22” so I spend an hour carefully reducing the weight of the top limb and tickling away at any stiff spots overall.

Bow unstrung after tillering to 53lb @ 26″

I’ve now got the stave down to 53lb at 26″ on the tillering tree. The extra 3lbs will likely come off as the bow is fine tillered and sanded after being shot in. both strung and unstrung I’ve got a really nice even balance of reflex in the handle and tips combined with a nice bit of mid limb deflex. The flicked tips haven’t pulled out and the string alignment is still just slightly biased towards the left side of the bow which for me as a right handed shooter is perfect. No signs of chrysaling anywhere on the belly and no splinters to be seen on the back. Time to get a handle wrap on and shoot her in.

A scrap piece of buckskin leather will do for now.

I always shoot a couple of hundred arrows through all of my unfinished bows before sanding and finishing. I’ve learnt that a bow which has been meticulously tillered on the tillering tree will move considerably through actual shooting. After two hundred shot you know what you have. I then recheck my tiller and adjust accordingly.

Happy with the final tiller it’s time to finish this bow. I start with 120 grit followed by 200 grit followed by 000 wire wool.
Next I wet the whole bow down with plain water to raise the grain.
After a day to dry thoroughly the grain gets hit back down with 000 wire wool.
Then its on with an oil based stain and many coats of Truoil to finish.
 

The finished bow can be seen here: https://southmoorbows.com/character-field-maple-deflex-reflex-selfbow-50-26/
 
Until next time!